Das Zweikörperproblem: Difference between revisions

From testwiki
Jump to navigation Jump to search
*>SchuBot
m Interpunktion, replaced: ! → !, ( → ( (10)
Line 226: Line 226:




====Energieerhaltung und Bahngleichung====
This info is the cat’s pjamaas!
 
Bestimmen wir die Lagranggleichung 2. Art für den radius r:
 
 
:<math>\frac{d}{dt}\frac{\partial L}{\partial \dot{r}}-\frac{\partial L}{\partial r}=0</math>
 
 
 
:<math>\begin{align}
  & \frac{\partial L}{\partial \dot{r}}=m\dot{r} \\
& \frac{\partial L}{\partial r}=mr{{{\dot{\phi }}}^{2}}-V\acute{\ }(r) \\
\end{align}</math>
 
 
Somit gilt:
 
 
:<math>m\ddot{r}-mr{{\dot{\phi }}^{2}}+V\acute{\ }(r)=0</math>
 
 
Mit der Zentrifugalkraft
:<math>mr{{\dot{\phi }}^{2}}</math>
 
 
Die Zeitableitung des Winkels können wir eliminieren durch die Bewegungskonstante l:
 
 
:<math>\dot{\phi }=\frac{l}{m{{r}^{2}}}</math>
 
 
 
:<math>m\ddot{r}-\frac{{{l}^{2}}}{m{{r}^{3}}}+V\acute{\ }(r)=0</math>
 
 
# '''Integral: '''Trick: Wir müssen die Gleichung auf zeitliche Änderung bringen. Zu diesem zweck multiplizieren wir alles mit
:<math>\dot{r}</math>
:
 
 
:<math>\begin{align}
  & m\ddot{r}\dot{r}-\frac{{{l}^{2}}}{m{{r}^{3}}}\dot{r}+\dot{r}V\acute{\ }(r)=0 \\
& m\ddot{r}\dot{r}=\frac{d}{dt}\left( \frac{m}{2}{{{\dot{r}}}^{2}} \right) \\
& \frac{{{l}^{2}}}{m{{r}^{3}}}\dot{r}=\frac{d}{dt}\left( -\frac{{{l}^{2}}}{2m{{r}^{2}}} \right) \\
& \dot{r}V\acute{\ }(r)=\frac{d}{dt}V(r) \\
\end{align}</math>
 
 
Somit können wir Integration über die zeit ausführen und es ergibt sich:
 
 
:<math>\frac{m}{2}{{\dot{r}}^{2}}+\frac{{{l}^{2}}}{2m{{r}^{2}}}+V(r)=const=E</math>
Energieerhaltung mit
:<math>T=\frac{m}{2}\left( {{{\dot{r}}}^{2}}+\frac{{{l}^{2}}}{{{m}^{2}}{{r}^{2}}} \right)=\frac{m}{2}\left( {{{\dot{r}}}^{2}}+{{r}^{2}}{{{\dot{\phi }}}^{2}} \right)</math>
 
 
<u>'''Andere Interpretation'''</u>
 
Die Bewegung der beiden Körper ist ebenfalls als eindimensionale Bewegung in einem '''effektiven'''
 
'''Radialpotenzial'''
 
 
:<math>\tilde{V}(r):=\frac{{{l}^{2}}}{2m{{r}^{2}}}+V(r)</math>
 
 
Dabei wird
:<math>\frac{{{l}^{2}}}{2m{{r}^{2}}}</math>
als Zentrifugalbarriere bezeichnet.
 
Es ergibt sich:
:<math>\frac{m}{2}{{\dot{r}}^{2}}+\tilde{V}(r)=const=E</math>
 
 
Somit:
 
 
:<math>\dot{r}=\sqrt{\frac{2}{m}\left( E-\tilde{V}(r) \right)}=\frac{dr}{dt}</math>
 
 
Integration liefert:
 
 
:<math>\int\limits_{{{r}_{o}}}^{r}{\frac{dr\acute{\ }}{\sqrt{\frac{2}{m}\left( E-\tilde{V}(r\acute{\ }) \right)}}=\int\limits_{{{t}_{o}}}^{t}{dt\acute{\ }}}</math>
 
 
Es sind somit t(r) und r(t) berechenbar.
 
Der Winkel folgt dann aus:
 
 
:<math>\dot{\phi }=\frac{d\phi }{dt}=\frac{l}{mr{{(t)}^{2}}}</math>
durch Einsetzen:
 
 
:<math>\int\limits_{{{\phi }_{o}}}^{\phi }{d}\phi \acute{\ }=\int\limits_{{{t}_{o}}}^{t}{{}}\frac{l}{m{{r}^{2}}(t\acute{\ })}dt\acute{\ }</math>
 
 
Es ergibt sich also:
:<math>\phi (t)</math>.
 
 
Die Bahngleichung wird gewonnen gemäß:
 
 
:<math>\frac{dr}{d\phi }=\frac{{\dot{r}}}{{\dot{\phi }}}=\frac{m{{r}^{2}}\sqrt{\frac{2}{m}\left( E-\tilde{V}(r) \right)}}{l}={{r}^{2}}\sqrt{\frac{2m}{{{l}^{2}}}\left( E-\tilde{V}(r) \right)}</math>
 
 
Es folgt:
 
 
:<math>\int\limits_{{{\phi }_{o}}}^{\phi }{d}\phi \acute{\ }=\int\limits_{{{r}_{o}}}^{r}{dr\acute{\ }}\frac{1}{r{{\acute{\ }}^{2}}\sqrt{\frac{2m}{{{l}^{2}}}\left( E-\tilde{V}(r\acute{\ }) \right)}}</math>
 
 
Daraus erhält man als Bahngleichung
:<math>\phi (r)</math>
bzw.
:<math>r(\phi )</math>.
 
 
Die Bahngleichung.


====Planetenbewegung und Keplersche Gesetze====
====Planetenbewegung und Keplersche Gesetze====

Revision as of 13:56, 1 July 2011


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=3|Abschnitt=5}} Kategorie:Mechanik __SHOWFACTBOX__


Hier werden die Erhaltungssätze zur Lösung der Bewegungsgleichung verwendet.

Idee:

f Freiheitsgrade → f Differenzialgleichungen 2. Ordnung

  • 2f Integrationskonstanten nötig! (jeweils zweifaches Integrieren). (Anfangsbedingungen).
  • Also existieren auch 2f Integrale der Bewegung

Falls alle 2f Integrale der Bewegung bekannt wären:


Ir(q1,...,qf,q˙1,...q˙f)=crr=1,...2f


So wäre das Problem vollständig gelöst:


qk=qk(c1,...,c2f,t)k=1,...,f


Also ist es das Ziel, möglichst viele Integrale der Bewegung zu finden.

Beispiel: Zweikörperproblem

2 Massen, m1 und m2 unter dem Einfluss Ihrer inneren Wechselwirkung: V(|r1-r2|) (Zentralpotenzial).

Beispiel: Sonne / Erde unter Gravitationswechselwirkung

Zahl der Freiheitsgrade: f=6

Also: es muessten 12 Integrale der Bewegung existieren

Erhaltungssätze

  1. V(|r1-r2|) ist translationsinvariant.

Somit ist der Impuls:

P¯=p¯1+p¯2

=konstant

Der Schwerpunkt:

R¯=1MP¯t+R¯0

bewegt sich gleichförmig und geradlinig.

Dies folgt aus:

MR¯˙=P¯=const


M:=m1 + m2

Somit sind 6 Integrationskonstanten gefunden:

P¯,R¯


  1. V(|r1-r2|) ist rotationsinvariant:

Damit ist der Drehimpuls

l¯=m1r¯1×v¯1+m2r¯2×v¯2=const


Es sind drei weitere Integrationskonstanten

l¯

gefunden.

  1. Die zeitliche Translationsinvarianz bei konservativer Kraft:


E=12m1v¯12+12m2v¯22+V(|r¯1r¯2|)=const


Eine Integrationskonstante E

Insgesamt sind 10 Integrale der Bewegung gefunden. Es bleiben nur 2 Integrationskonstanten, nämlich der Nullpunkt der Zeit- und Winkelskala. Diese ergeben sich aus den ANfangsbedingungen.

Impuls- und Drehimpulserhaltung

Lagrange- Formulierung:


L=TV=12m1v¯12+12m2v¯22V(|r¯1r¯2|)


Verallgeminerte Koordinaten: Schwerpunktskoordinaten:


(q1q2q3):=R¯=1M(m1r¯1+m2r¯2) Schwerpunktskoordinate (q4q5q6):=r¯=r¯1r¯2

Relativkoordinate

Die Umkehrung liefert dann die gesuchten Größen:


r¯1=R¯+m2Mr¯r¯2=R¯m1Mr¯r¯˙1=R¯˙+m2Mr¯˙r¯˙2=R¯˙m1Mr¯˙L=M2R¯˙2+12mr¯˙2V(r)


Dabei bezeichnet


r:=|r¯|
den Abstand und


m=m1m2m1+m2

die relative Masse


L=M2R¯˙2+12mr¯˙2V(r)


R¯

ist zyklische Koordinate:

LRk=0LR˙k=MR˙k=Pk=const

mit k= x,y,z


R¯=1MP¯t+R¯0


Verwende das Schwerpunktsystem als Inertialsystem:

o.B.d.A:

R¯=R¯˙=0


Damit ergibt sich die vereinfachte Lagrangegleichung


L=12mr¯˙2V(r)


mit:


r¯1=+m2Mr¯r¯2=m1Mr¯r¯˙1=+m2Mr¯˙r¯˙2=m1Mr¯˙


Der Drehimpuls berechnet sich gemäß:


l¯=m1r¯1×v¯1+m2r¯2×v¯2=(m1m22M2+m2m12M2)r¯×r¯˙=mr¯×r¯˙=const

(Rotationsinvarianz)

Somit folgt aber auch (zyklische Vertauschbarkeit):


l¯r¯=l¯r¯˙=0


Beide, Radiusvektor und Geschwindigkeitsvektor

r¯,r¯˙

liegen in der Ebene senkrecht zu

l¯

(Im Schwerpunktsystem).

Übergang zu Polarkoordinaten. Wir legen das Koordinatensystem so, dass der Drehimpuls parallel zur z- Achse zeigt:


x=rcosϕx˙=r˙cosϕrϕ˙sinϕy=rsinϕy˙=r˙sinϕ+rϕ˙cosϕ


Somit:


r¯˙2=x˙2+y˙2=...=r˙2+r2ϕ˙2


Nun wählen wir neue verallgemeinerte Koordinaten statt x,y :

(r,ϕ)


L=12m(r˙2+r2ϕ˙2)V(r)


ϕ

ist zyklische Koordinate:

Lϕ=0Lϕ˙=mr2ϕ˙=l=const


Hier: l = lz, da lx = ly =0

Also:

mr2ϕ˙=lz=m(xy˙yx˙)=const


Flächensatz: 2. keplersches Gesetz

Geometrische Interpretation von

mr2ϕ˙=lz=m(xy˙yx˙)=const

Radiusvektor überstreicht in gleichen Zeiten gleiche Flächen.

Das heißt: Die Flächengeschwindigkei ist konstant:


Für die Fläche gilt:


δF=12|r¯||r¯+δr¯|sinδϕ12r2δϕ


Dabei gilt die rechtsseitige Näherung für sehr kleine Änderungen in Radiusvektor und Winkel. Bleibt richtig für infinitesimale Betrachtung:


ddtF=12r2dϕdt=l2m=const


This info is the cat’s pjamaas!

Planetenbewegung und Keplersche Gesetze

Betrachten wir speziell das Gravitationspotenzial als Wechselwirkung:


V(r)=γm1m2r mit r=|r¯1r¯2|


Somit ergibt sich ein effektives Radialpotenzial gemäß


V~(r)=kr+l22mr2k:=γm1m>0


ALs Grenzwert folgt:


r0:V~(r)=l22mr2r:V~(r)=kr0


Differenziation findet ein Minimum:


dV~(r)dr=kr2l2mr3=0ro=l2mkV~(ro)=mk22l2 Wegen m2r˙2=EV~(r)

ist eine Bewegung nur für

EV~(r)0

möglich. Also muss

EV~(r)


Es gilt:


0>EV~(ro)0>Emk22l2
Bahnen sind geschlossen (Ellipse, Spezialfall: Kreis)


E>0

Bahnen sind offen. (Hyperbeln)

Wir werden sehen, dass für E=0 eine Parabelbahn folgt.

Das Potenzial hat die folgende Gestalt:

Für

0>EV~(ro)0>Emk22l2


Sind die Umkehrpunkte durch

V~(r)=kr+l22mr2=E


bestimmt (quadratisch Gleichung in r mit zwei Lösungen):


rmin/max=12|E|(kk22l2|E|m)


Für E>0 gibt es nur noch eine Lösung für r, die positiv und damit physikalisch sinnvoll ist.

Aus

gewinnt man den inneren Umkehrpunkt:

Die Bahngleichung kann nun explizit berechnet werden:


ϕoϕdϕ´=ϕϕo=rordr´1r´22ml2(EV~(r´))=rordr´r´212mEl2+2mkl2r´1r´2


Dieses Integral ist nicht leicht zu berechnen, jedoch lediglich ein mathematisches Problem. Es gelingt mit einer geschickten Substitution:

Zunächst soll der Ausdruck unter der Wurzel quadratisch ergänzt werden:


2mEl2+2mkl2r´1r´2=(1r´mkl2)2+m2k2l4+2mEl2 mit (1r´mkl2)2+m2k2l4+2mEl2:=D[11D(1r´mkl2)2]D:=2ml2(mk22l2+E)


Dabei gilt:


mk22l2=V~(ro)D:=2ml2(mk22l2+E)0


Substitution:


cosϑ´:=1D(1r´mkl2)dcosϑdr´=1D(1r´2)dcosϑdϑ=sinϑ´sinϑdϑ=dcosϑsinϑ´dϑ=1D(dr´r´2)


Somit folgt:


ϕϕo=rordr´r´212mEl2+2mkl2r´1r´2=rordr´r´21D[11D(1r´mkl2)2]=rordr´r´21D[11D(1r´mkl2)]rordr´r´21D[11D(1r´mkl2)]=ϑ0ϑdϑ´sinϑ´11cos2ϑ´=ϑ0ϑdϑ´=ϑϑ0ϑϑ0=arccos1D(1rmkl2)arccos1D(1romkl2)


Also in Summary:


ϕϕo=arccos1D(1rmkl2)arccos1D(1romkl2)


Eine der Integrationskonstanten,


ϕo oder ro

kann frei eingesetzt werden.

Wir wählen den Winkel willkürlich:

Mit der vereinfachenden Wahl von


ϕo=arccos1D(1romkl2)


ergibt sich:


ϕ(r)=arccos1D(1rmkl2)1r(ϕ)=mkl2+Dcosϕ=mkl2(1+εcosϕ)mitε:=Dl2mk=1+2El2mk2


Wesentlich ist unsere Bahngleichung:


1r(ϕ)=mkl2+Dcosϕ=mkl2(1+εcosϕ)


Dies ist nämlich, wie jedem Mathematiker bekannt ist, die Gleichung eines Kegelschnitts in Polarkoordinaten:


ε>1E>0Hyperbel(offeneBahn)ε=1E=0Parabel(offeneBahn)ε<1mk22l2<E<0Ellipse(geschlosseneBahn)


Für da zweidimensionale Problem ist die Umrechnung auf kartesische Korodinaten sehr einfach:

Dies ist nämlich, wie jedem Mathematiker bekannt ist, die Gleichung eines Kegelschnitts in Polarkoordinaten:


cosϕ=xrsinϕ=yrr=(x2+y2)


Für

ε<1

folgt:



(mkl2(1ε2)x+ε)2+m2k2l4(1ε2)y2=1m2k2l4(1ε2)2(x+l2mkε(1ε2))2+m2k2l4(1ε2)y2=1


Dies kann vereinfacht werden zu:


(x+e)2a2+y2b2=1


mit der Exzentrizität


e=a2b2


Dies ist die Gleichung einer Ellipse mit einem Brennpunkt im Ursprung.

Die Hauptachsen lauten:


a=l2mk(1ε2)=k2|E|b=l2mk1ε2=l2m|E|


Die relative Exzentrizität:


ε=ea=1b2a2


e, die absolute Exzentrizität ist der absolute Abstand zwischen Mittelpunkt der Ellipse und einem Brennpunkt.

Keplersches Gesetz

Folgt also aus der Bewegungsgleichung mit Gravitationspotenzial bei negativen Energien:

Die Planetenbahnen sind Ellipsen, in deren einen Brennpunkt die Sonne steht.

Keplersches Gesetz

T²~a³

Beweis:

Für die Fläche einer Ellipse gilt:


F=πab


Wenn wir das zweite Keplersche Gesetz verwenden (Flächensatz), so gilt:


dFdt=l2m=const


Es ergibt sich der folgende Zusammenhang mit der Umlaufzeit:


0TdtdFdt=l2mT=F=πab


Aus der Herleitung des ersten Keplerschen Gesetzes ist bekannt:


b2a=l2mkb=lmkaT=2mπabl=2mπa32kT2a3=4π2mk


Die zweiten Potenzen der Umlaufdauer sind somit nicht exakt proportional zur dritten Potenz der großen Halbachsen, da auch die Masse des Planeten noch eingeht:


k=γm1m2m=m1m2m1+m2mk=1γ(m1+m2)


Falls die Planeten jedoch deutlich leichter sind als die Zentralgestirne, so gilt:


mk1γm2T2a34π2γm2


Leitet man dies aus dem Kraftansatz ab, so steckt der Fehler der Vernachlässigung der Planetenmasse in der Annahme einer kreisförmigen Bewegung um das Zentralgestirn. Das Ergebnis ist ebenso fehlerbelastet.