Forminvarianz der Lagrangegleichungen: Difference between revisions

From testwiki
Jump to navigation Jump to search
Die Seite wurde neu angelegt: „<noinclude>{{Scripthinweis|Mechanik|2|4}}</noinclude> Eine schwächere Form der Invarianz ( als die Eichinvarianz) ist die Forminvarianz. Dabei gilt als Forminva…“
 
*>SchuBot
Einrückungen Mathematik
Line 33: Line 33:




<math>\tilde{L}({{Q}_{k}},{{\dot{Q}}_{k}},t):=L({{f}_{k}}({{Q}_{i}},t),\sum\limits_{i}{{}}\frac{\partial {{f}_{k}}}{\partial {{Q}_{i}}}{{\dot{Q}}_{i}}+\frac{\partial {{f}_{k}}}{\partial t},t)</math>
<math>\tilde{L}({{Q}_{k}},{{\dot{Q}}_{k}},t):=L({{f}_{k}}({{Q}_{i}},t),\sum\limits_{i}{{}}\frac{\partial {{f}_{k}}}{\partial {{Q}_{i}}}{{\dot{Q}}_{i}}+\frac{\partial {{f}_{k}}}{\partial t},t)</math> mit <math>\begin{align}
 
 
mit
 
 
<math>\begin{align}
   & {{f}_{k}}({{Q}_{i}},t)={{q}_{k}} \\
   & {{f}_{k}}({{Q}_{i}},t)={{q}_{k}} \\
  & \sum\limits_{i}{{}}\frac{\partial {{f}_{k}}}{\partial {{Q}_{i}}}{{{\dot{Q}}}_{i}}+\frac{\partial {{f}_{k}}}{\partial t}={{{\dot{q}}}_{k}} \\
  & \sum\limits_{i}{{}}\frac{\partial {{f}_{k}}}{\partial {{Q}_{i}}}{{{\dot{Q}}}_{i}}+\frac{\partial {{f}_{k}}}{\partial t}={{{\dot{q}}}_{k}} \\
Line 56: Line 50:




<math>\frac{d}{dt}\frac{\partial \tilde{L}}{\partial {{{\dot{Q}}}_{k}}}=\sum\limits_{l=1}^{f}{\frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{l}}}\frac{\partial {{{\dot{q}}}_{l}}}{\partial {{{\dot{Q}}}_{k}}}=}\sum\limits_{l=1}^{f}{\frac{d}{dt}\left( \frac{\partial L}{\partial {{{\dot{q}}}_{l}}}\frac{\partial {{q}_{l}}}{\partial {{Q}_{k}}} \right)}</math>
<math>\frac{d}{dt}\frac{\partial \tilde{L}}{\partial {{{\dot{Q}}}_{k}}}=\sum\limits_{l=1}^{f}{\frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{l}}}\frac{\partial {{{\dot{q}}}_{l}}}{\partial {{{\dot{Q}}}_{k}}}=}\sum\limits_{l=1}^{f}{\frac{d}{dt}\left( \frac{\partial L}{\partial {{{\dot{q}}}_{l}}}\frac{\partial {{q}_{l}}}{\partial {{Q}_{k}}} \right)}</math> wegen <math>\begin{align}
wegen
 
 
<math>\begin{align}
   & {{f}_{k}}({{Q}_{i}},t)={{q}_{k}} \\
   & {{f}_{k}}({{Q}_{i}},t)={{q}_{k}} \\
  & \sum\limits_{i}{{}}\frac{\partial {{f}_{k}}}{\partial {{Q}_{i}}}{{{\dot{Q}}}_{i}}+\frac{\partial {{f}_{k}}}{\partial t}={{{\dot{q}}}_{k}} \\
  & \sum\limits_{i}{{}}\frac{\partial {{f}_{k}}}{\partial {{Q}_{i}}}{{{\dot{Q}}}_{i}}+\frac{\partial {{f}_{k}}}{\partial t}={{{\dot{q}}}_{k}} \\

Revision as of 17:06, 12 September 2010


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=2|Abschnitt=4}} Kategorie:Mechanik __SHOWFACTBOX__


Eine schwächere Form der Invarianz ( als die Eichinvarianz) ist die Forminvarianz.

Dabei gilt als Forminvarianz:


LqkddtLq˙k=0LQkddtLQ˙k=0


Für welche Trnsformationen der generalisierten Koordinaten


F:{qk}{Qk}


sind nun die Lagrangegleichungen forminvariant ?

Satz:

Sei F:{qk}{Qk} ein C²- Diffeomorphismus,

also eine umkehrbare und eindeutige Abbildung und sind


F,F1 beide zweimal stetig differenzierbar, dann ist


{Qk(t)} Lösung der Lagrangegleichung zur transformierten Lagrangefunktion:


L~(Qk,Q˙k,t):=L(fk(Qi,t),ifkQiQ˙i+fkt,t) mit fk(Qi,t)=qkifkQiQ˙i+fkt=q˙k


Diese Aussage ist äquivalent zur Aussage:


{qk(t)} sind Lösung der Lagrangegleichungen zu L(qk,q˙k,t)


Beweis:


ddtL~Q˙k=l=1fddtLq˙lq˙lQ˙k=l=1fddt(Lq˙lqlQk) wegen fk(Qi,t)=qkifkQiQ˙i+fkt=q˙k


Nun:


ddtL~Q˙k=l=1f{[ddt(Lq˙l)]qlQk+Lq˙lddt(qlQk)}=l=1f{[ddt(Lq˙l)]qlQk+Lq˙l(q˙lQk)}


und auf der anderen Seite:


L~Qk=l=1f(LqlqlQk+Lq˙l(q˙lQk))


Somit:


ddtL~Q˙kL~Qk=l=1f{[ddt(Lq˙l)]qlQk+Lq˙l(q˙lQk)(LqlqlQk+Lq˙l(q˙lQk))}=l=1f{[ddt(Lq˙l)]qlQk(LqlqlQk)}=l=1fqlQk{[ddt(Lq˙l)](Lql)}


Dabei bildet


qlQk die Transformationsmatrix, die nichtsingulär sein muss, also detqlQk0


Daher die Bedingung, dass

Sei F:{qk}{Qk} ein C²- Diffeomorphismus,

also eine umkehrbare und eindeutige Abbildung und


F,F1 beide zweimal stetig differenzierbar.

Nur dann ist {Qk(t)} Lösung der Lagrangegleichung zur transformierten Lagrangefunktion.

Denn diese Aussage ist äquivalent zu


Qi=Fi(q1,...qf,t)qk=fk(Q1,...,Qf,t)mitdetfkQi0


Man sagt, die Variationsableitung


ddtL~Q˙kL~Qk ist kovariant unter diffeomorphen Transformationen der generalisierten Koordinaten

Also gibt es auch unendlich viele äquivalente Sätze generalisierter Koordinaten.