Zeitunabhängige Störungsrechnung bei Entartung: Difference between revisions

From testwiki
Jump to navigation Jump to search
*>SchuBot
No edit summary
*>SchuBot
Einrückungen Mathematik
Line 3: Line 3:
Betrachte zeitunabhängige Schrödingergleichung:
Betrachte zeitunabhängige Schrödingergleichung:


<math>\hat{H}\left| \Psi  \right\rangle =E\left| \Psi  \right\rangle </math>
:<math>\hat{H}\left| \Psi  \right\rangle =E\left| \Psi  \right\rangle </math>


soll berechnet werden, wobei
soll berechnet werden, wobei


<math>\hat{H}={{\hat{H}}_{0}}+{{\hat{H}}^{1}}</math>
:<math>\hat{H}={{\hat{H}}_{0}}+{{\hat{H}}^{1}}</math>


durch den ungestörten Hamilton- Operator mit einer kleinen Störung repräsentiert wird.
durch den ungestörten Hamilton- Operator mit einer kleinen Störung repräsentiert wird.
Line 15: Line 15:
linear entwickelt werden kann:
linear entwickelt werden kann:


<math>{{\hat{H}}_{1}}=\varepsilon \hat{V}</math>
:<math>{{\hat{H}}_{1}}=\varepsilon \hat{V}</math>


( dabei soll die Störung zeitunabhängig sein !)
( dabei soll die Störung zeitunabhängig sein !)
Line 25: Line 25:
Das ungestörte Problem schreibt sich dann:
Das ungestörte Problem schreibt sich dann:


<math>{{\hat{H}}_{0}}\left| n,\alpha  \right\rangle ={{E}_{n}}^{(0)}\left| n,\alpha  \right\rangle \quad \alpha =1,...,s</math>
:<math>{{\hat{H}}_{0}}\left| n,\alpha  \right\rangle ={{E}_{n}}^{(0)}\left| n,\alpha  \right\rangle \quad \alpha =1,...,s</math>


Damit bezeichnet <math>\alpha =1,...,s</math>
Damit bezeichnet <math>\alpha =1,...,s</math>
Line 35: Line 35:
wird die Entartung jedoch im Allgemeinen aufgehoben:
wird die Entartung jedoch im Allgemeinen aufgehoben:


<math>\hat{H}\left| {{\Psi }_{k}} \right\rangle ={{E}_{k}}\left| {{\Psi }_{k}} \right\rangle </math>
:<math>\hat{H}\left| {{\Psi }_{k}} \right\rangle ={{E}_{k}}\left| {{\Psi }_{k}} \right\rangle </math>


Die Störungsreihe/ Störungsentwicklung
Die Störungsreihe/ Störungsentwicklung


<math>\left| {{\Psi }_{k}} \right\rangle =\left| {{\Psi }_{k}}^{(0)} \right\rangle +\varepsilon \left| {{\Psi }_{k}}^{(1)} \right\rangle +{{\varepsilon }^{2}}\left| {{\Psi }_{k}}^{(2)} \right\rangle +...</math>
:<math>\left| {{\Psi }_{k}} \right\rangle =\left| {{\Psi }_{k}}^{(0)} \right\rangle +\varepsilon \left| {{\Psi }_{k}}^{(1)} \right\rangle +{{\varepsilon }^{2}}\left| {{\Psi }_{k}}^{(2)} \right\rangle +...</math>


ist unter diesen Bedingungen nur für ein bestimmtes, geeignetes
ist unter diesen Bedingungen nur für ein bestimmtes, geeignetes


<math>\left| {{\Psi }_{k}}^{(0)} \right\rangle =\sum\limits_{\alpha }^{{}}{{}}{{c}_{\alpha }}\left| k,\alpha  \right\rangle </math>
:<math>\left| {{\Psi }_{k}}^{(0)} \right\rangle =\sum\limits_{\alpha }^{{}}{{}}{{c}_{\alpha }}\left| k,\alpha  \right\rangle </math>


möglich:
möglich:
Line 65: Line 65:
'''f=1'''
'''f=1'''


<math>\left( {{{\hat{H}}}_{0}}-{{E}_{k}}^{(0)} \right)\left( \left| {{\Psi }_{k}}^{(1)} \right\rangle  \right)=\left( {{E}_{k}}^{(1)}-\hat{V} \right)\sum\limits_{\alpha }{{{c}_{\alpha }}}\left| k,\alpha  \right\rangle </math>
:<math>\left( {{{\hat{H}}}_{0}}-{{E}_{k}}^{(0)} \right)\left( \left| {{\Psi }_{k}}^{(1)} \right\rangle  \right)=\left( {{E}_{k}}^{(1)}-\hat{V} \right)\sum\limits_{\alpha }{{{c}_{\alpha }}}\left| k,\alpha  \right\rangle </math>


1. Näherung
1. Näherung
Line 75: Line 75:
heraus:
heraus:


<math>\begin{align}
:<math>\begin{align}


& \left\langle  k,\beta  \right|\left( {{{\hat{H}}}^{(0)}}-{{E}_{k}}^{(0)} \right)\left| {{\Psi }_{k}}^{(1)} \right\rangle =\sum\limits_{\alpha }{{{c}_{\alpha }}\left( \left\langle  k,\beta  |  k,\alpha  \right\rangle {{E}_{k}}^{(1)}-\left\langle  k,\beta  \right|\hat{V}\left| k,\alpha  \right\rangle  \right)} \\
& \left\langle  k,\beta  \right|\left( {{{\hat{H}}}^{(0)}}-{{E}_{k}}^{(0)} \right)\left| {{\Psi }_{k}}^{(1)} \right\rangle =\sum\limits_{\alpha }{{{c}_{\alpha }}\left( \left\langle  k,\beta  |  k,\alpha  \right\rangle {{E}_{k}}^{(1)}-\left\langle  k,\beta  \right|\hat{V}\left| k,\alpha  \right\rangle  \right)} \\
Line 89: Line 89:
Somit folgt:
Somit folgt:


<math>0=\sum\limits_{\alpha }{\left( {{{\hat{V}}}_{\beta \alpha }}-{{E}_{k}}^{(1)}{{\delta }_{\beta \alpha }} \right){{c}_{\alpha }}}</math>
:<math>0=\sum\limits_{\alpha }{\left( {{{\hat{V}}}_{\beta \alpha }}-{{E}_{k}}^{(1)}{{\delta }_{\beta \alpha }} \right){{c}_{\alpha }}}</math>


Dies ist aber gerade eine Eigenwertgleichung für die sogenannte Störmatrix<math>{{\hat{V}}_{\beta \alpha }}</math>
Dies ist aber gerade eine Eigenwertgleichung für die sogenannte Störmatrix<math>{{\hat{V}}_{\beta \alpha }}</math>
Line 95: Line 95:
:
:


<math>\begin{align}
:<math>\begin{align}


& 0=\sum\limits_{\alpha }{\left( {{{\hat{V}}}_{\beta \alpha }}-{{E}_{k}}^{(1)}{{\delta }_{\beta \alpha }} \right){{c}_{\alpha }}}=\left( \hat{V}-{{E}_{k}}^{(1)}1 \right)\bar{c} \\
& 0=\sum\limits_{\alpha }{\left( {{{\hat{V}}}_{\beta \alpha }}-{{E}_{k}}^{(1)}{{\delta }_{\beta \alpha }} \right){{c}_{\alpha }}}=\left( \hat{V}-{{E}_{k}}^{(1)}1 \right)\bar{c} \\
Line 115: Line 115:
also:
also:


<math>\left| \begin{matrix}
:<math>\left| \begin{matrix}


{{{\hat{V}}}_{11}}-{{E}_{k}}^{(1)} & {{{\hat{V}}}_{12}} & ... & {{{\hat{V}}}_{1s}}  \\
{{{\hat{V}}}_{11}}-{{E}_{k}}^{(1)} & {{{\hat{V}}}_{12}} & ... & {{{\hat{V}}}_{1s}}  \\
Line 143: Line 143:
Säkulardeterminante
Säkulardeterminante


<math>\begin{align}
:<math>\begin{align}


& \left| \begin{matrix}
& \left| \begin{matrix}
Line 160: Line 160:


Dies als Korrekturterm. Somit folgt für ein Energieniveau der Energie E:
Dies als Korrekturterm. Somit folgt für ein Energieniveau der Energie E:
<math>E={{E}^{(0)}}+\varepsilon {{E}_{k}}^{(1)}={{E}^{(0)}}+\frac{\varepsilon }{2}\left[ \left( {{{\hat{V}}}_{11}}+{{{\hat{V}}}_{22}} \right)\pm \sqrt{{{\left( {{{\hat{V}}}_{11}}-{{{\hat{V}}}_{22}} \right)}^{2}}+4{{\left| {{{\hat{V}}}_{12}} \right|}^{2}}} \right]</math>
:<math>E={{E}^{(0)}}+\varepsilon {{E}_{k}}^{(1)}={{E}^{(0)}}+\frac{\varepsilon }{2}\left[ \left( {{{\hat{V}}}_{11}}+{{{\hat{V}}}_{22}} \right)\pm \sqrt{{{\left( {{{\hat{V}}}_{11}}-{{{\hat{V}}}_{22}} \right)}^{2}}+4{{\left| {{{\hat{V}}}_{12}} \right|}^{2}}} \right]</math>


Dabei gibt <math>\sqrt{{{\left( {{{\hat{V}}}_{11}}-{{{\hat{V}}}_{22}} \right)}^{2}}+4{{\left| {{{\hat{V}}}_{12}} \right|}^{2}}}</math>
Dabei gibt <math>\sqrt{{{\left( {{{\hat{V}}}_{11}}-{{{\hat{V}}}_{22}} \right)}^{2}}+4{{\left| {{{\hat{V}}}_{12}} \right|}^{2}}}</math>

Revision as of 15:49, 12 September 2010


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=5|Abschnitt=4}} Kategorie:Quantenmechanik __SHOWFACTBOX__


Betrachte zeitunabhängige Schrödingergleichung:

H^|Ψ=E|Ψ

soll berechnet werden, wobei

H^=H^0+H^1

durch den ungestörten Hamilton- Operator mit einer kleinen Störung repräsentiert wird.

Die Störung lasse sich als Potenzialstörung darstellen, die mittels des von Null verschiedenen jedoch kleinen Parameters ε

linear entwickelt werden kann:

H^1=εV^

( dabei soll die Störung zeitunabhängig sein !)

Wenn wir nun annehmen, dass zur Energie En(0)

mehrere (orthonormal) entartete Zustände gehören, so müssen wir das Problem anpassen:

Das ungestörte Problem schreibt sich dann:

H^0|n,α=En(0)|n,αα=1,...,s

Damit bezeichnet α=1,...,s

die Nummerierung der entarteten Zustände beim Entartungsgrad s. Bei diesem Beispiel wäre der N. Eigenzustand s- fach entartet !

Durch H^1=εV^

wird die Entartung jedoch im Allgemeinen aufgehoben:

H^|Ψk=Ek|Ψk

Die Störungsreihe/ Störungsentwicklung

|Ψk=|Ψk(0)+ε|Ψk(1)+ε2|Ψk(2)+...

ist unter diesen Bedingungen nur für ein bestimmtes, geeignetes

|Ψk(0)=αcα|k,α

möglich:

Wähle nun |Ψk(0)

im ungestörten Eigenraum so, dass für limε0|Ψk=|Ψk(0)

( eindeutig bestimmt).

Das Einsetzen in die Entwicklung der Ordnung εf

liefert:

f=1

(H^0Ek(0))(|Ψk(1))=(Ek(1)V^)αcα|k,α

1. Näherung

Das Skalarprodukt mit k,β|k,β|k,α=δαβ

"projiziert" wieder die Korrektur des jeweils entarteten Terms der Nummer β

heraus:

k,β|(H^(0)Ek(0))|Ψk(1)=αcα(k,β|k,αEk(1)k,β|V^|k,α)k,β|(H^(0)Ek(0))|Ψk(1)=0k,β|k,α=δβαk,β|V^|k,α:=V^βα

Somit folgt:

0=α(V^βαEk(1)δβα)cα

Dies ist aber gerade eine Eigenwertgleichung für die sogenannte StörmatrixV^βα

0=α(V^βαEk(1)δβα)cα=(V^Ek(1)1)c¯c¯CsV^Cs×Cs

Die Gleichung heißt auch "Säkulargleichung" zur Berechnung von Eigenwerten und bildet ein homogenes, lineares Gleichungssystem.

Die Bezeichnung folgt in Anlehnung an die früheren Anwendungen: Berechnung der astronomischen säkularen Störungen.

Nichttriviale Lösungen existieren genau dann, wenn die Determinante det(V^Ek(1)1)

, die sogenannte Säkulardeterminante, verschwindet, also det(V^Ek(1)1)=0

also:

|V^11Ek(1)V^12...V^1sV^21V^22Ek(1)..................V^s1......V^ssEk(1)|=0

Für den Fall V^

hermitesch folgt V^βα=V^αβ*

Dann existieren reelle Eigenwerte Ek(1)

und die Eigenvektoren zu Ek(1)El(1)

sind orthogonal !

Bemerkung: Die Entartung muss NICHT vollständig aufgehoben werden !

Beispiel: 2 entartete Zustände

Säkulardeterminante

|V^11Ek(1)V^12V^21V^22Ek(1)|=0(Ek(1))2(V^11+V^22)Ek(1)+(V^11V^22V^12V^21)=0V^12V^21=|V^12|2Ek(1)=12[(V^11+V^22)±(V^11V^22)2+4|V^12|2]

Dies als Korrekturterm. Somit folgt für ein Energieniveau der Energie E:

E=E(0)+εEk(1)=E(0)+ε2[(V^11+V^22)±(V^11V^22)2+4|V^12|2]

Dabei gibt (V^11V^22)2+4|V^12|2 die Energieaufspaltung an. E ist , wie angegeben die gesamte Energie in 1. Störungstheoretischer Ordnung. Die Aufspaltung erfolgt linear in ε , also linear zur Störung: