Zustände mit Bahn- und Spinvariablen: Difference between revisions
Die Seite wurde neu angelegt: „{{Scripthinweis|Quantenmechanik|4|3}} Sei nun <math>\left| nlm{{m}_{s}} \right\rangle </math> ein Zustand, der Bahn- und Spinfreiheitsgrade beschreibt: <math>\…“ |
No edit summary |
||
Line 1: | Line 1: | ||
{{Scripthinweis|Quantenmechanik|4|3}} | <noinclude>{{Scripthinweis|Quantenmechanik|4|3}}</noinclude> | ||
Sei nun <math>\left| nlm{{m}_{s}} \right\rangle </math> | Sei nun <math>\left| nlm{{m}_{s}} \right\rangle </math> |
Revision as of 15:35, 9 September 2010
65px|Kein GFDL | Der Artikel Zustände mit Bahn- und Spinvariablen basiert auf der Vorlesungsmitschrift von Franz- Josef Schmitt des 4.Kapitels (Abschnitt 3) der Quantenmechanikvorlesung von Prof. Dr. E. Schöll, PhD. |
|}}
{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=4|Abschnitt=3}} Kategorie:Quantenmechanik __SHOWFACTBOX__
ein Zustand, der Bahn- und Spinfreiheitsgrade beschreibt:
Der Bahnzustand ist Element des Bahn- Hilbertraumes und der Spinzustand Element des Spin- Hilbertraumes. Der Gesamtzustand erfordert einen Raum, der sich als DIREKTES PRODUKT der beiden Hilberträume zeigt.
Allgemein gilt für separable oder Produktzustände
( äquivalente Sprechweise):
Ein beliebiger Zustand kann nach Spin- Basis Zuständen
zerlegt werden:
mit
In der Ortsraum- Basis mit dem Bahn- Zustand
In der Matrix- Darstellung des Spinraumes ergibt dies:
Mit
entsprechend 2 Spinkomponenten, also entsprechend
Die Vollständigkeit der Zustände
folgt aus:
Weiter:
, einmal die Komponente mit Spin
und einmal die Komponente mit Spin
. Dabei gilt:
entspricht der Wahrscheinlichkeit, das Elektron zur Zeit t bei mit Spin bzw. Spin zu finden.
Schrödingergleichung im Spin- Bahn- Raum
Hamilton- Operator für Bahn: Elektron mit Ladung e<0 Wirkt alleine im Hilbertraum
wirkt dabei nur im Hilbertraum
Also haben wir je nach Spinzustand schon 2 Schrödingergleichungen in
Es gilt (äquivalente Darstellung):
Dabei = Einsoperator im Spinraum -> Spin bleibt unberücksichtigt. Einheitsmatrix für beliebigen Vorgang im Spinraum:
In Matrix- Darstellung: PAULI- GLEICHUNG
Anwendung
- einfacher Zeeman- Effekt mit Spin. 1 Elektron im kugelsymmetrischen Potenzial ( Kern (H)oder Atomrumpf(Na)) und homogenen Magnetfeld
Dabei wird durch der Bahndrehimpuls Hamiltonian durch den Spinraum erweitert.
Wie man sieht bekommt man durch den Korrekturterm eine Korrektur an die Energie.
Für B=0 -> Eigenzustände mit Spin
Insgesamt fach entartet. Beim H- Atom: zusätzliche l- Entartung
Das bedeutet: teilweise Aufhebung der - fachen Entartung ( sogenannter Anomaler Zeemann- Effekt !)
Dies gilt für PARAMAGNETISCHE Atome mit magnetischem Moment
Dabei entspricht vor ms dem gyromagnetischen Verhältnis, kommt also wegen dem Landé- Faktor g=2, auch wenn dieser leicht von 2 verschieden ist ! ( Siehe oben). Für dieses Beispiel wird die Energieverschiebung linear zu B am besten in Einheiten von angegeben. s und p - Orbital lassen sich folgendermaßen in einem sogenannten Termschema skizzieren ( für den anomalen Zeemann- Effekt ): Das heißt: die m- Entartung, die ohne Spin vollständig aufgehoben wurde, ist jetzt nur noch teilweise aufgehoben ! Da die Aufhebung der Spin- Entartung die Energiezustände wieder so " weiterrückt", dass vorher getrennte wieder zusammenfallen ! Tabelle: Landé- Faktoren Teilchen s g Q Elektron 1/2 2 -e Proton 1/2 5,59 e Neutron 1/2 -3,83 0 Neutrino 1/2 0 0 Photon 1 0 0