Materie in elektrischen und magnetischen Feldern: Difference between revisions

From testwiki
Jump to navigation Jump to search
Die Seite wurde neu angelegt: „ =Polarisation= Materie enthält mikroskopische elektrisch geladene Bausteine # '''freie Ladungsträger''' Elektronen in Metallen, Elektronen + Löcher in Halbl…“
 
No edit summary
Line 1: Line 1:
 
{{Scripthinweis|Elektrodynamik|5}}
=Polarisation=
=Polarisation=



Revision as of 15:00, 20 August 2010


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=5|Abschnitt=}} Kategorie:Elektrodynamik __SHOWFACTBOX__


Polarisation

Materie enthält mikroskopische elektrisch geladene Bausteine

  1. freie Ladungsträger

Elektronen in Metallen, Elektronen + Löcher in Halbleitern

  • Beschleunigung in äußeren Feldern, E- Felder, B- Felder über Ohmsches Gesetz und Lorentz-kraft

K¯=q[E¯+(v¯×B¯)]

  • elektrische Ströme -> Beschreibung der Materialeigenschaften durch die elektrische Leitfähigkeit
  • σ
  1. gebundene Ladungen ( In Isolatoren)
  • Polarisierung im E- Feld
  1. Für E =0 vorhandene mikroskopische Dipole p werden zur Minimierung der potenziellen Energie

Wel.=-p E vorzugsweise ( entgegen der zufälligen thermischen Bewegung) parallel zu E orientiert ( z.B. bei polarisierten Molekülen, Wasser etc... gut zu beobachten !)

  1. Nicht- polare Atome oder Moleküle werden dann durch E durch Verschiebung der Ladungswolken polarisiert. Es entstehen induzierte elektrische Dipole, die zu E parallel ausgerichtet sind:

p¯=d3rρ(r¯)r¯0 nach Einschalten des Feldes. Es werden in den Atomen/ Molekülen positive und negative Ladungen getrennt !


Makroskopische räumliche Mittelung

Netto- Ladungen entstehen dadurch an den Grenzflächen


Dies erzeugt im Inneren ein Polarisationsgegenfeld E¯´=E¯+E¯pε0E¯´=ε0E¯+ρP gemäß ε0E¯p=ρP


Das resultierende Gesamtfeld lautet:

E¯´=E¯+E¯pε0E¯´=ε0E¯+ρP

Mit der freien Ladungsdichte

ε0E¯=ρ

Also:

ε0E¯´=ρ+ρP

Die Polarisation selbst bestimmt sich nach

P¯(r¯,t):=ε0E¯p(r¯,t)

ein makroskopisches lokales Feld, dessen Quelle Polarisationsladungen sind.

Somit:

(ε0E¯´+P¯)=ρP¯=ρP

Als Dielektrische Verschiebung bezeichnen wir

D¯(r¯,t)=(ε0E¯´+P¯)

Dies ist die effektive makroskopische Feldgröße, als dessen Quellen nur noch die freien Ladungen ( ohne Polarisationsladungen) auftreten:

D¯=ρ

Wir bezeichnen mit

P¯(r¯,t)df¯=dQP

die Polarisationsladung, die beim Übergang vom unpolarisierten zum polarisierten Zustand durch die Fläche df verschoben wird:


Denn ( bei Betrachtung eines Volumens V, das durch df begrenzt ist):

VP¯(r¯,t)df¯=Vd3rP¯(r¯,t)=Vd3rρP

= Polarisationsladung, die V verläßt !

Zusammenhang mikroskopische elektrische Dipole / makroskopische Größen:

ρm(r¯,t)=iqiδ(r¯r¯i(t)) ( mikroskopische Ladungsdichte)

P¯m(r¯,t)=ip¯iδ(r¯r¯i(t)) ( mikroskopische Dipoldichte) mit:

Vd3rP¯m(r¯,t)=ip¯i

Mittelung über ein kleines makroskopisches Volumen ΔV:

(ΔV)13<< Längenskala der makroskopischen Dichtevariation

Somit:

ρ(r¯,t)=1ΔVΔVd3sρm(r¯+s¯,t) ( makroskopische Ladungsdichte)

P¯(r¯,t)=1ΔVΔVd3sP¯m(r¯+s¯,t)

Also: Die makroskopische Dipoldichte ist GLEICH DER POLARISATION !!

Beweis:

Betrachten wir das mikroskopische retardierte Potenzial:

Φm(r¯,t)=14πε0R3d3r´ρm(r¯´,t|r¯r¯´|c)|r¯r¯´|

wobei unter dem Integral die mikroskopische Ladungsdichte einzusetzen ist !

Das makroskopisch gemittelte Potenzial folgt dann gemäß

Φ(r¯,t)=1ΔVΔVd3sΦm(r¯+s¯,t)=14πε01ΔVΔVd3sR3d3r´ρm(r¯´,t|r¯+s¯r¯´|c)|r¯+s¯r¯´|r¯´´:=r¯´s¯Φ(r¯,t)=14πε01ΔVΔVd3sR3d3r´´ρm(r¯´´+s¯,t|r¯r¯´´|c)|r¯r¯´´|=14πε0R3d3r´´1|r¯r¯´´|1ΔVΔVd3sρm(r¯´´+s¯,t|r¯r¯´´|c)

Wobei

1ΔVΔVd3sρm(r¯´´+s¯,t|r¯r¯´´|c)=ρ(r¯´´+s¯,t|r¯r¯´´|c)

Die makroskopische Ladungsdichte ist !

Φ(r¯,t)=14πε0R3d3r´´1|r¯r¯´´|1ΔVΔVd3sρm(r¯´´+s¯,t|r¯r¯´´|c)=14πε0R3d3r´´1|r¯r¯´´|ρ(r¯´´+s¯,t|r¯r¯´´|c)

Analog:

Das mikroskopische Potenzial der elektrischen Dipole

p¯i

Φm(r¯,t)=14πε0r{i1|r¯r¯i|p¯i(t|r¯r¯i|c)}

mit dem mikroskopischen Dipolmoment

p¯i(t|r¯r¯i|c)

Analog:

Φm(r¯,t)=14πε0R3d3r´r{1|r¯r¯´|P¯m(r¯´,t|r¯r¯´|c)}

mit der mikroskopischen Dipoldichte

P¯m(r¯´,t|r¯r¯´|c)

Somit ergibt sich für das makroskopisch gemittelte elektrische Potenzial:

Φ(r¯,t)=1ΔVΔVd3sΦm(r¯+s¯,t)=14πε01ΔVΔVd3sR3d3r´r{1|r¯+s¯r¯´|P¯m(r¯´,t|r¯+s¯r¯´|c)}=14πε0R3d3r´´r{1|r¯r¯´´|P¯(r¯´´,t|r¯r¯´´|c)}

Umformung:

r{1|r¯r¯´|P¯(r¯´,t|r¯r¯´|c)}=r´{1|r¯r¯´|P¯(r¯´,t|r¯r¯´|c)}+Korrektur

Dabei haben wir das Problem , dass beim Übergang zur gestrichenen Ableitung hier auch nach dem Argument r´ von P abgeleitet wird. Also müssen wir dies wieder abziehen:

r{1|r¯r¯´|P¯(r¯´,t|r¯r¯´|c)}=r´{1|r¯r¯´|P¯(r¯´,t|r¯r¯´|c)}+1|r¯r¯´|r´P¯(r¯´,t|r¯r¯´|c)t´=t|r¯r¯´|cr{1|r¯r¯´|P¯(r¯´,t|r¯r¯´|c)}=r´{1|r¯r¯´|P¯(r¯´,t|r¯r¯´|c)}+1|r¯r¯´|r´P¯(r¯´,t´)

Also folgt für das Potenzial:

Dies ist das makroskopische Potenzial einer Polarisationsladungsdichte

ρp(r¯´,t´)=(r´P¯(r¯´,t´))

Damit können wir die makroskopische Dipoldichte P¯ mit der durch P¯:=ε0E¯p bzw.

P¯=ρp definierten Polarisation identifizieren.

Magnetisierung

Mirkoskopische Ursache für den Magnetismus der Materie sind mikroskopische Kreisströme bzw. mikroskopische magnetische Dipolmomente m¯

a) Für B¯=0 vorhandene, permanente magnetische Momente m¯ werden zur Minimierung der potenziellen Energie Wmag.=m¯B¯ vorzugsweise ( entgegen der thermischen Bewegung) parallel zum äußeren B- Feld orientiert. Beispiel: Spin- Bahn- Momente von Elektronen

  • paramagnetisches Verhalten
  1. durch B können nach dem Faradayschen Induktionsgesetz Kreisströme freier oder gebundener Ladungen induziert werden. Wegen der Lenzschen Regel ist die induzierte Magnetisierung antiparallel zum äußeren B- Feld.
  • diamagnetisches Verhalten !

Makroskopisch gemittelte Felder

mikroskopische magnetische Dipoldichte: Wie bei Polarisationsdichte:

M¯m(r¯,t)=im¯i(t)δ(r¯r¯i)P¯m(r¯,t)=ip¯i(t)δ(r¯r¯i)el.Dipoldichte

Mittelung über ein kleines, makroskopisches Volumen ΔV

M¯(r¯,t)=1ΔVΔVd3sM¯m(r¯+s¯,t)

makroskopische magnetische Dipoldichte:= Magnetisierung

Ziel: Zusammenhang zwischen der magnetischen Dipoldichte M¯(r¯,t) und den effektiven Feldern B¯ in der Materie finden. Hierzu zeige man, dass eine Magnetisierungsstromdichte j¯M

als Quelle der Felder eingeführt werden kann:

×B¯M=μ0j¯M

bzw.

×M¯=j¯M

effektive Gesamtinduktion ( im stationären Fall):

B¯´=B¯+B¯M×(1μ0B¯´)=×(1μ0B¯)+j¯M=j¯+j¯M

Also: Erzeugung des B- Feldes ( Differenz aus effektiver Gesamtinduktion und Magnetisierung) durch den sogenannte freien Strom j :

B¯´=B¯+B¯M×(1μ0B¯´M¯)=j¯H¯=1μ0(1μ0B¯´B¯M)=B¯μ0

Betrachten wir das Vektorpotenzial der mikroskopischen elektrischen und magnetischen Dipole:

A¯m(r¯,t)=μ04πi[1|r¯r¯i|p¯˙i(t|r¯r¯i|c)+×(1|r¯r¯i|m¯i(t|r¯r¯i|c))]p¯i(t|r¯r¯i|c)elektrDipolmomentm¯i(t|r¯r¯i|c)magnetDipolmomentA¯m(r¯,t)=μ04πd3r´[1|r¯r¯´|p¯˙m(r¯´,t|r¯r¯´|c)+r×(1|r¯r¯´|M¯m(r¯´,t|r¯r¯´|c))]

mit der mikroskopischen elektrischen Dipoldichte

p¯m(r¯´,t|r¯r¯´|c)

und der magnetischen Dipoldichte

M¯m(r¯´,t|r¯r¯´|c)

Als makroskopisch gemitteltes Potenzial:

A¯(r¯,t)=1ΔVΔVd3sA¯m(r¯+s¯,t)=μ04π1ΔVΔVd3sd3r´[1|r¯+s¯r¯´|p¯˙m(r¯´,t|r¯+s¯r¯´|c)+r×(1|r¯+s¯r¯´|M¯m(r¯´,t|r¯+s¯r¯´|c))]==μ04πd3r´[1|r¯r¯´|P¯˙(r¯´,t|r¯r¯´|c)+r×(1|r¯r¯´|M¯(r¯´,t|r¯r¯´|c))]

Wobei nur die makroskopischen Dichten einzusetzen sind ( vergleiche oben)

Umformung liefert:

A¯(r¯,t)=μ04πd3r´[1|r¯r¯´|P¯˙(r¯´,t|r¯r¯´|c)+r×(1|r¯r¯´|M¯(r¯´,t|r¯r¯´|c))]d3r´r×(1|r¯r¯´|M¯(r¯´,t|r¯r¯´|c))==d3r´r´×(1|r¯r¯´|M¯(r¯´,t|r¯r¯´|c))+d3r´1|r¯r¯´|r´×M¯(r¯´,t´)t´=t|r¯r¯´|cd3r´r´×(1|r¯r¯´|M¯(r¯´,t|r¯r¯´|c))=0A¯(r¯,t)=μ04πd3r´[1|r¯r¯´|P¯˙(r¯´,t|r¯r¯´|c)+1|r¯r¯´|r´×M¯(r¯´,t´)]

Definition

P¯˙=j¯pr´×M¯(r¯´,t´)=j¯M

Ersteres: Polarisationsstromdichte Letzteres: Magnetisierungsstromdichte

Also:

A¯(r¯,t)=μ04πd3r´1|r¯r¯´|[j¯p(r¯´,t|r¯r¯´|c)+j¯M(r¯´,t´)]

Das heißt, das makroskopisch gemittelte retardierte Vektorpotenzial wird durch die Polarisations- und Magnetisierungsstromdichten im Medium erzeugt !

es gilt der Erhaltungssatz:

t´ρp=P¯˙=j¯pρ˙p+j¯p=0

Kontinuitätsgleichung für die Erhaltung der Polarisationsladung !

Maxwell- Gleichungen in Materie

Die vollständigen Potenziale enthalten

  • die freie Ladungs- und Stromdichten
  • ρ,j¯
  • die Polarisations- und Magnetisierungsbeiträge
  • ρp,j¯p,j¯m

Somit folgt für die vollständigen Potenziale:

t´=t|r¯r¯´|cA¯(r¯,t)=μ´04πd3r´1|r¯r¯´|[j¯(r¯´,t|r¯r¯´|c)+j¯P(r¯´,t|r¯r¯´|c)+j¯M(r¯´,t|r¯r¯´|c)]Φ(r¯,t)=14πε0d3r´1|r¯r¯´|[ρ(r¯´,t|r¯r¯´|c)+ρP(r¯´,t|r¯r¯´|c)]

Diese Potenziale sind Lösungen der inhomogenen Wellengleichung in Lorentz- Eichung

#A¯(r¯,t)=μ´0[j¯+j¯P+j¯M]#Φ(r¯,t)=1ε0[ρ+ρP]

Für die Felder in Materie folgt:

E¯=Φ(r¯,t)tA¯(r¯,t)B¯=×A¯(r¯,t)

Daraus folgen die Maxwell- Gleichungen:

1)×E¯=t×A¯(r¯,t)=tB¯2)B¯=0

  • Wie im Vakuum

3)E¯=tA¯(r¯,t)ΦA¯(r¯,t)=1c2tΦE¯=tA¯(r¯,t)Φ=1c22t2ΦΔΦ=#Φ

In Lorentz Eichung !

E¯=tA¯(r¯,t)Φ=1c22t2ΦΔΦ=#Φ=1ε0(ρ+ρp)=1ε0(ρP¯)

per Definition von ρp .

3)(ε0E¯(r¯,t)+P¯(r¯,t))=ρ(r¯,t)(ε0E¯(r¯,t)+P¯(r¯,t)):=D¯(r¯,t)D¯(r¯,t)=ρ(r¯,t)

Die Dielektrische Verschiebung

4) Letzte Gleichung:

×B¯(r¯,t)=×(×A¯(r¯,t))=(A¯(r¯,t))ΔA¯(r¯,t)A¯(r¯,t)=1c2tΦ×B¯(r¯,t)=ΔA¯(r¯,t)1c2tΦΦ=E¯tA¯(r¯,t)×B¯(r¯,t)=ΔA¯(r¯,t)+1c2tE¯+1c22t2A¯(r¯,t)=#A¯(r¯,t)+1c2tE¯=μ0(j¯+j¯P+j¯M)+ε0μ0tE¯j¯P=P¯˙j¯M=×M¯×B¯(r¯,t)=μ0t(P¯+ε0E¯)+μ0×M¯+μ0j¯4)×(1μ0B¯(r¯,t)M¯)=j¯+tD¯(1μ0B¯(r¯,t)M¯)=H(r¯,t)×H(r¯,t)=j¯+tD¯

Mit dem Magnetfeld H(r¯,t) , welches so definiert wurde, dass es nur durch die FREIEN Ströme erzeugt wird:

Zusammenfassung:

1)×E¯=t×A¯(r¯,t)=tB¯2)B¯=0

3)D¯(r¯,t)=ρ(r¯,t)

4)×H(r¯,t)=j¯+tD¯

4)×H(r¯,t)tD¯=j¯

Dabei beschreibt

1)×E¯=t×A¯(r¯,t)=tB¯2)B¯=0

die Wechselwirkung der Felder mit Probeladungen und

3)D¯(r¯,t)=ρ(r¯,t)

4)×H(r¯,t)tD¯=j¯

die Erzeugung der Felder durch FREIE Ladungen und Ströme

Weiter:

D¯(r¯,t)=ε0E¯(r¯,t)+P¯(r¯,t)H¯(r¯,t)=1μ0B¯(r¯,t)M¯(r¯,t)

Im Gauß System ( weil so oft in diesem angegeben, vergl. Jackson):

1)×E¯+1ctB¯=02)B¯=0

3)D¯(r¯,t)=4πρ(r¯,t)

4)×H(r¯,t)1ctD¯=4πcj¯

die Erzeugung der Felder durch FREIE Ladungen und Ströme

Weiter:

5)D¯(r¯,t)=E¯(r¯,t)+4πP¯(r¯,t)6)H¯(r¯,t)=B¯(r¯,t)4πM¯(r¯,t)

Unsere 6 Feldgleichungen ( wenn man so will, also ( es kann nicht oft genug gezeigt werden):

1)×E¯+1ctB¯=02)B¯=0

3)D¯(r¯,t)=4πρ(r¯,t)

4)×H(r¯,t)1ctD¯=4πcj¯

5)D¯(r¯,t)=E¯(r¯,t)+4πP¯(r¯,t)6)H¯(r¯,t)=B¯(r¯,t)4πM¯(r¯,t)

sind nicht vollständig. Es muss noch der Zusammenhang zwischen Polarisation und E- Feld, bzw. B- Feld und Magnetisierung angegeben werden. Dies sind die sogenannten " Materialgleichungen".

Einfachster Fall:

  1. isotrope Materie:

E¯(r¯,t)||P¯(r¯,t)

und für paramagnetische Stoffe B¯(r¯,t)M¯(r¯,t)

für diamagnetische Stoffe: B¯(r¯,t)M¯(r¯,t) , also ein skalarer Zusammenhang

  1. bei nicht zu hohen Feldern:

E¯~P¯

B¯~M¯

also ein linearer Zusammenhang

  1. ohne Gedächtniseffekte, keine nichtlokale Wechselwirkung ( keine Phasenkohärenzen):

E¯(r¯,t)~P¯(r¯,t)

B¯(r¯,t)~M¯(r¯,t)

neben der Linearität also ein INSTANTANER, LOKALER Zusammenhang !

Dann kann man schreiben:

P¯(r¯,t)=ε0χeE¯(r¯,t)

M¯(r¯,t)=χMH¯(r¯,t)

Mit den Suszeptibilitäten, der elektrischen Suszeptibilität

χe und der magnetischen Suszeptibilität χM ( Materialkonstanten). Die Materialkonstanten müssen aus den mikroskopischen Theorien ( z.B. Quantentheorie, Festkörperphysik) abgeleitet werden.

D¯(r¯,t)=ε0E¯(r¯,t)+P¯=ε0(1+χe)E¯(r¯,t)=ε0εE¯(r¯,t)

mit

ε=(1+χe) , der relativen Dielektrizitätskonstante ( permittivity)

B¯=μ0(H¯+M¯)=μ0(1+χM)H¯(r¯,t)=μ0μH¯

mit

(1+χM)=μ , der relativen Permeabilität

M¯=χMH¯=1μ0χMμB¯=1μ0χM(1+χM)B¯

Man sagt: Ein Stoff ist paramagnetisch für χM(1+χM)>0

diamagnetisch für χM(1+χM)<0

paramagnetisch: χM>0μ>1

diamagnetisch 0>χM>10<μ<1

Bemerkungen

E¯(r¯,t)=0P¯=0 beschreibt kein Ferroelektrikum

B¯=0M¯=0 kein Ferromagnet

Es gilt stets χe>0 ( Dielektrischer Effekt, Polarisierbarkeit -> es existiert keine negative Polarisierbarkeit)

χM><0 Para- ODER Diamagnet

Ein Term ~B¯ in P¯ oder ~E¯ in M¯ kann gar nicht auftreten, schon wegen des falschen Raumspiegelverhaltens !

E¯ ist polarer Vektor, B¯ ist axialer Vektor !

ρP(r¯,t)=P¯(r¯,t) ist ein Skalar

j¯M=rotM¯ ist ein polarer Vektor.

Abweichungen

1)Für anisotrope Kristalle : P¯(r¯,t)=ε0χ¯¯eE¯

drückt den anisotropen Charakter aus mit einem symmetrischen Tensor χ¯¯e .

2) für starke Felder gibt es nichtlineare Effekte, die ebenfalls tensoriellen Charakter der Suszeptibilität bedingen:

P¯(r¯,t)=ε0(χ¯¯e(1)E¯+χ¯¯e(2)E¯2+χ¯¯e(3)E¯3+...)

Anwendung: optische Nichtlinearität, Beispiel: optische Bistabilität, optische Schalter:


Für hochfrequente Felder folgt:

P¯(r¯,t)=ε0d3r´dt´χe(r¯,r¯´,t,t´)E¯(r¯´,t´)

( räumliche bzw. zeitliche Dispersion):

P¯^(k¯,ω)=ε0χ^e(k¯,ω)E¯^(k¯,ω)

Grenzbedingungen für Felder

_ Frage ist: Wie verhalten sich B¯,H¯,D¯,E¯ an Grenzflächen, die verschiedene elektrische und magnetische Materialien ( Vakuum/ Materie) trennen ?

Integration der Maxwell- Gleichungen über ein Volumen V:


Vd3rD¯(r¯,t)=Vd3rρ(r¯,t)=Q=Vdf¯D¯(r¯,t)

Vd3r×H(r¯,t)=Vd3r(j¯+tD¯)

Bildlich:

Normalkomponenten: Betrachte einen Zylinder, der senkrecht auf einer Grenzfläche steht. Nun nimmt man die Maxwellgleichungen in integraler Schreibweise an und läßt den Zylinder unter Berücksichtigung von Integrationssätzen gegen Null- Höhe gehen:

also: Für die Normalkomponenten: h -> 0

Während also die Normalkomponente des B- Feldes an der Grenzfläche stetig ist, springt die Normalkomponente der dielektrischen Verschiebung um die Ladung, die an der Grenzfläche sitzt: Unter der Annahme, dass die Grenzfläche die freie Flächenladungsdichte σ trägt:

ρ(r¯,t)=σ(x,y,t)δ(z)e¯zn¯limh>0Vd3rρ(r¯,t)=Q=Fdfσ(x,y,t)limh>0Vdf¯D¯(r¯,t)=Fdf¯(D¯(1)D¯(2))=Fdfn¯(D¯(1)D¯(2))=Fdfσ(x,y,t)

limh>0Vdf¯B¯=Fdf¯(B¯(1)B¯(2))=Fdfn¯(B¯(1)B¯(2))=0

Somit müssen die Integranden übereinstimmen:

n¯(B¯(1)B¯(2))=0

n¯(D¯(1)D¯(2))=σ(x,y,t)

Tangentialkomponenten

Anwendung des verallgemeinerten Gaußschen Satz:

1)×E¯+1ctB¯=0

4)×H(r¯,t)1ctD¯=4πcj¯

Vd3r×E¯=Vd3rtB¯

Vd3r×H(r¯,t)=Vd3r(j¯+tD¯)

Auch hier: h-> 0

Vd3r×E¯=Vdf¯×E¯=Vd3rtB¯Vd3r×H(r¯,t)=Vdf¯×H(r¯,t)=Vd3r(j¯+tD¯)limh>0Vdf¯×E¯=Vdfn¯×(E¯(1)E¯(2))limh>0Vdf¯×H(r¯,t)=Vdfn¯×(H(r¯,t)(1)H(r¯,t)(2))

In beiden Fällen die Tangentialkomponenten der Felder ! senkrecht auf Flächenvektor und Feld

Wegen:

limh>0Vdf¯×E¯=Vdfn¯×(E¯(1)E¯(2))=limh>0Vd3rtB¯limh>0Vdf¯×H(r¯,t)=Vdfn¯×(H(r¯,t)(1)H(r¯,t)(2))=limh>0Vd3r(j¯+tD¯)

Annahme: Grenzfläche trägt (freie) Flächenstromdichte g¯j¯(r¯,t)=g¯(x,y,t)δ(z)

wie es bei metallen der Fall ist !, dann:

limh>0Vd3rj¯=Fdfg¯

Weiter:

limh>0Vd3rtB¯limh>0Vd3rtD¯

können für Volumenintegrale mit verschwindendem Volumen nur einen Beitrag liefern, wenn tB¯,tD¯ Unendlichkeitsstellen besitzen.

Annahme:

B¯,D¯ und tB¯,tD¯ sind beschränkt:

limh>0Vd3rtB¯=0limh>0Vd3rtD¯=0limh>0Vd3r(j¯+tD¯)=Fdfg¯(x,y,t)Vdfn¯×(E¯(1)E¯(2))=0Vdfn¯×(H(r¯,t)(1)H(r¯,t)(2))=Fdfg¯(x,y,t)

Somit haben wir die Grenzbedingungen für die Tangentialkomponenten:

n¯×(E¯(1)E¯(2))=0n¯×(H(r¯,t)(1)H(r¯,t)(2))=g¯(x,y,t)

Das heißt:

Die Tangentialkomponente des elektrischen Feldes E ist am Grenzübergang stetig Die Tangentialkomponente des magnetischen Feldes H springt am Grenzübergang um die Flächenstromdichte !

Bildlich: Sitzen Ladungen an einer Grenzfläche, so ist die Normalkomponente von D ( wichtig: Polarisationseffekt -> Polarisation muss irgendwo mit auftauchen) nicht stetig ! Fließen flächenartige Ströme entlang einer Grenzfläche, so ist die Tangentialkomponente von H nicht stetig !

Zusammenfassung:

δE¯:=(E¯(1)E¯(2))

Maxwellgleichung Grenzbedingung

1)×E¯=t×A¯(r¯,t)=tB¯n¯×δE¯=02)B¯=0n¯δB¯=0

3)D¯(r¯,t)=ρ(r¯,t)n¯δD¯(r¯,t)=σ

4)×H(r¯,t)=j¯+tD¯n¯×δH(r¯,t)=g¯

Also: die Tangenzialkomponente von E ist stetig Die Normalkomponente von D springt um die Flächenladungsdichte ( Flächendivergenz) Die Tangentialkomponente von H springt ( Flächenrotation) um die Flächenstromdichte Die Normalkomponente von B ist stetig.

Beispiele:

  1. Grenzfläche zwischen 2 dielektrischen Materialien mit

ε(1)<ε(2)σ=0


Zuerst zeichne man sich ein derartiges Diagramm hin !

E¯t(1)=E¯t(2)D¯n(1)=D¯n(2)

letzteres wegen der verschwindenden Flächenladungsdichte !

E¯t(1)=E¯t(2)D¯n(1)=D¯n(2)ε1E¯n(1)=ε2E¯n(2)E¯n(2)=ε1ε2E¯n(1)tanα1=E¯t(1)E¯n(1)=ε1ε2E¯t(2)E¯n(2)=ε1ε2tanα2

Dies ist das Brechungsgesetz für die Feldlinien

Achtung ! Das Snelliussche Brechungsgesetz müsste man sich für den Verlauf des Energiestroms berechnen

  1. Grenzfläche zwischen Vakuum ( Luft) und magnetischem Material

2.1 Sei speziell B¯ Grenzfläche ( z.B. zwischen den Polschuhen eines Ringmagneten mit Luft dazwischen / Material genauso !)): In diesem Fall (keine Oberflächenströme) ist B¯ grundsätzlich stetig ! B ist eh immer grundsätzlich stetig ! Wegen der Divergenzgleichung wird B immer ( wie D´) für Normalkomponenten herangezogen.

  1. Paramagnetisch:

1μ0B¯=M¯+H¯M¯H¯


  1. Paramagnetisch:

1μ0B¯=M¯+H¯M¯H¯


2.2 Sei speziell B¯|| Grenzfläche ( z.B. lange Spule mit Luft dazwischen / Material genauso !)): Wir müssen nun Tangentialkomponenten untersuchen. Dazu nimmt man die Rotationsgleichungen ( E und H):

In diesem Fall ist H¯ stetig für g¯=0 ( kein Oberflächenstrom)

Mikroskopisches Modell der Polarisierbarkeit

Ziel: Berechnung der Materialkonstanten

5.5 Mikroskopisches Modell der Polarisierbarkeit

Ziel: Berechnung der Materialkonstanten χe aus einfachen mikroskopischen Modellen Methode: Berechne die induzierte mittlere elektrische Dipoldichte P¯ für ein gegebenes Feld E¯ .

Nebenbemerkung: Die Orientierungspolarisation ist nur mittels einer thermodynamischen- statistischen Theorie zu berechnen: Hier: Auseinandersetzung nur mit der " induzierten" Polarisation

Klassisches Atommodell:

homogen geladene Kugel mit Radius R und Elektronenladung Qe=Ze<0

Außerdem ein punktförmiger Kern mit Qk=+Ze>0 am Ort r¯k

Merke:

Auch diese Berechnungen geschehen, wie im NOTFALL grundsätzlich zu empfehlen, durch Lösen integraler Darstellungen der Maxwellgleichungen

Ziel: Berechnung des elektrischen Feldes E¯el.(r¯) der Elektronen nach außen:

Gauß- Gesetz


Vd3rD¯(r¯,t)=Vd3rρ(r¯,t)=Q=Vdf¯D¯(r¯,t)

Wir müssen aber zurückkehren zu den mikroskopischen Maxwellgleichungen


Wichtig ! Integration immer über das Gebiet, in dem die Ladung vorhanden ist, aber ! Betrachtung des elektrischen Feldes an einem gewissen Aufpunkt r! Die Ladung ist eigentlich von r´ abhängig , aber hier homogen verteilt !-> einfache Integration.

Auswertung liefert

ε0V(r´)df¯E¯(r¯,t)=V(r´)Q43πR3=r´3R3Q4r´2πε0|E¯(r¯,t)|=r´3R3Q|E¯(r¯,t)|=r´4πε0R3Q

Natürlich nur für

r´R

setzt man r¯´=r¯r¯e , wobei r¯e das Zentrum der elektrischen Ladung angibt,

so gewinnt man das rotationssymmetrische Ergebnis

E¯(r¯,t)=r¯r¯e4πε0R3Qe

und die Kraft auf den Kern folgt gemäß:

F¯K=QKE¯(r¯´k,t)=r¯kr¯e4πε0R3QeQk=Z2e24πε0R3(r¯kr¯e)

wegen actio = reactio folgt dann für die Kraft auf die Elektronen:

F¯e=F¯K

Aufstellen der Bewegungsgleichungen ( inklusive einem äußeren Feld E¯a ):

mKr¯¨k=F¯K+QKE¯a(r¯´k,t)=Z2e24πε0R3(r¯kr¯e)+QKE¯a(r¯´k,t)=Z2e24πε0R3(r¯kr¯e)+ZeE¯a(r¯´k,t)Zmer¯¨e=F¯K+QeE¯a(r¯´k,t)=Z2e24πε0R3(r¯kr¯e)+QeE¯a(r¯´k,t)=Z2e24πε0R3(r¯kr¯e)ZeE¯a(r¯´k,t)

Also folgt für die Relativbewegung:

r¯=r¯kr¯e

als relativer Abstand

r¯¨=r¯¨kr¯¨e=Z2e24πε0R3mK(r¯kr¯e)+ZemKE¯a(r¯´k,t)Ze24πε0R3me(r¯kr¯e)+emeE¯a(r¯k,t)=Z2e24πε0R3(1mK+1Zme)(r¯kr¯e)+Ze(1mK+1Zme)E¯a(r¯k,t)(1mK+1Zme)1Zme(r¯kr¯e)=r¯r¯¨=Ze24πε0meR3r¯+emeE¯a(r¯k,t)Ze24πε0meR3:=ω02r¯¨+ω02r¯=emeE¯a(r¯k,t)

Also ergibt sich ein harmonischer Oszillator mit quadratischem Potenzial ! was wir schon an der Bestimmung des Potenzials sofort hätten sehen können !

Jedenfalls im stationären Zustand gilt:

r¯=eω02meE¯a(r¯k,t)

( Dynamik mit Dämpfung)

χe(ω)

Als Ergebnis gewinnen wir ein statisch mikroskopisch elektrisches Dipolmoment, welches sich über p=qd bereits hinschreiben läßt und welches auch übereinstimmt mit Gleichungen von oben zur exakten Berechnung des elektrischen Dipolmoments:

p¯=Zer¯=Ze2ω02meE¯a(r¯k,t)=ε0αE¯aα:=Ze2ω02ε0meZe24πε0meR3:=ω02α:=Ze2ω02ε0me=4πR3=3VAtom

Die Polarisierbarkeit des Atoms, ein mikroskopischer Parameter. Entsprechend:

p¯=Vd3r´ρe(r´)r¯´+ZeVd3r´δ(r¯r¯´)ZeVd3r´δ(r¯r¯´)=Zer¯Vd3r´ρe(r´)r¯´=Ze4π3R3Vd3r´r¯´Vd3r´r¯´=0

wegen Symmetrie

p¯=Zer¯

makroskopisch gemittelte Energiedichte:

P¯=np¯=ε0nαE¯a

mit der mittleren Atomdichte n

Selbstkonsistente Berechnung des Lokalfeldes Ea:

Wichtig: Berücksichtigung der Felder, die durch andere elektrische Dipole erzeugt werden:

Gedankenexperiment


Feld einer homogenen polarisierten Kugel:

Ansatz: homogen geladene Kugel:

E¯0(r¯)=Q4πε0{r¯a3rar¯r3ra

Also:


Φ0(r¯)=Q4πε0{cr¯22a3ra1rra

Bestimmung der Integrationskonstanten:

limε>0Φ0(aε)=Φ0(a+ε)c=32a

die homogen polarisierte Kugel

Bei der homogen polarisierten Kugel kann man 2 entgegegengesetzt homogen geladene Kugeln mit Abstand ro annehmen.

Dann: ro -> 0


Bilde:

Φ0(r¯)=Φ0(r¯12r¯0)Φ0(r¯+12r¯0)r¯0Φ0(r¯)Φ0(r¯)=E¯0Φ0(r¯)r¯0E¯0=Q4πε0{r¯0r¯a3rar¯0r¯r3ra=14πε0{p¯r¯a3rap¯r¯r3rap¯:=Qr¯0

Das Dipolmoment der herausgeschnittenen Kugel.

Als Näherung wurde taylorentwickelt. Dabei allerdings nur bis zur ersten Ordnung und Nullte Ordnung verschwindet. Verwendet wurde das Dipolmoment der Kugel. Man kann auf Polarisation ( eigentlich Dipoldichte) umschreiben:

P¯=p¯43a3πΦ0(r¯)r¯0E¯0=Q4πε0{r¯0r¯a3rar¯0r¯r3ra=1ε0{P¯r¯3raP¯r¯a3r3ra

Wir gewinnen innerhalb der Kugel homogene Polarisation und außerhalb ein Dipolpotenzial.

E¯Kugel=Φ=1ε0P¯3ra

für das elektrische Feld im Inneren der Kugel ( homogen polarisiert).

Gesamtes Lokalfeld am Ort des Atoms ergibt sich nach:


das äußere Feld wird erzeugt durch Atome, die sich außerhalb der Hohlkugel befinden. Das innere Feld durch Atome im Inneren der Hohlkugel. Gezeichnet: Lokalfeld einer polarisierten dielektrischen Kugel im homogenen elektrischen Feld


Das Lokalfeld im INNEREN des KugelHOHLRAUMS, welcher aus dem Volumen herausgeschnitten wurde:

E¯a(r¯)=E¯E¯KUgel

E¯a(r¯):LokalfeldE¯:makroskopischE¯a(r¯)=E¯+13ε0P¯

Letztes wurde von Lorentz eingeführt als "Korrekturfeld"

weil

E¯a+E¯Kugel=E¯ sein muss

Das Lokalfeld am Ort des Atoms mit dem Innenfeld der dielektrischen Kugel ( wieder in den Hohlraum eingesetzt) ergibt das mittlere makroskopische Feld !

Zusammenhang zwischen P und makroskopischem Feld E:

P¯=ε0nαE¯a=ε0nα(E¯+13ε0P¯)P¯=ε0χeE¯χe=nα113nαnα=χe1+13χe=ε11+ε13=3ε1ε+2

Formel von Clausius - Masotti für polarisierte Kugel

Wellenausbreitung in Materie

Annahme: homogene, isotrope, lineare Medien mit skalaren Materialparametern ε,μ,σ

D¯=εε0E¯ε>1B¯=μ0μH¯i.a.μ~1j¯=σE¯

( ohmsches Gesetz)

Wellen in leitenden Medien ohne Dispersion:

Das heißt: ε,μ,σ nicht frequenzabhängig !

Sei

ρ=0×E¯+B¯˙=0×B¯μ0μεε0E¯˙=μ0μj¯=μ0μσE¯E¯=0B¯=0×(×E¯)=(E¯)ΔE¯=ΔE¯=×B¯˙=μ0μσE¯˙μ0μεε0E¯¨ΔE¯=μ0μσE¯˙+μ0μεε0E¯¨

Somit erhalten wir die Gleichung einer gedämpften Welle

ΔE¯1cm2(σεε0E¯˙+E¯¨)=0cm:=1εε0μμ0=c1εμ

Für den eindimensionalen Fall: sogenannte Telegraphengleichung. Beschreibt die Drahtwellenausbreitung !

Spezielle Lösung dieses Problems:

homogene, ebene Welle:

E¯(r¯,t)=E¯0ei(k¯r¯ωt)k2=εμω2c2(1+i1ωτ)

Dispersionsrelation für den Fall der frequenzunabhängigen Parameter Durch die Dämpfung σ ist der Wellenvektor ein komplexer Parameter.

kC

Setze:

k=ωcn~=ωc(n+iγ)

mit c: Vakuumlichtgeschwindigkeit

n~=(n+iγ) komplexer Brechungsindex ! Somit:

k2=ω2c2n~2=ω2c2(n2γ2+2inγ)=ω2c2εμ(1+i1ωτ)

Damit können Real- und Imaginärteil durch Vergleich herangezogen werden, um Gamma und n zu bestimmen:

n2γ2=εμnγ=εμ2ωτ

  • Bestimmung von
  • n,γ
  • :

o.B.d.A.:

k¯||x¯3

Ausschreiben der Welle:

E¯(r¯,t)=E¯0ei(k¯r¯ωt)E¯(x¯3,t)=E¯0ex3λeiω(tncx3)

Also eine gedämpfte Welle mit der Phasengeschwindigkeit cn und dem Extinktionskoeffizienten

λ=cωγ

Lineare Polarisation:

E¯0||x¯1B¯0||x¯2

(×E¯)2=E1x3=B˙2iωc(n+iγ)E1=iωB2B2=(n+iγ)cE1=n2+γ2ceiϕE1

Somit existiert eine Phasenverschiebung ϕ zwischen E und B

Der Isolator

σ=0τ

Folgen:

γ=0 keine Dämpfung

ϕ =0 keine Phasenverschiebung zwischen E und B

  • kommt erst durch die Dämpfung !
  • i m Isolator schwingen E und B in Phase !

reeller Brechungsindex:

n=εμε>1

  • Phasengeschwindigkeit :
  • cn<c

Nebenbemerkung: Nur OHNE DISPERSION ist ε reell

Metalle


τ=ε0εσ<<1ω für alle Frequenzen bis UV Somit:

k2=ω2c2(n2γ2+2inγ)ω2c2εμiωτn2γ20nγn2γ2εμ2ωτn=γ=εμ2ωτtanϕ=γn1ϕπ4

Extinktionskoeffizient

d<<cωγ~cm für 100 Hz ( hochfrequente Wellen dringen nicht in Metall ein, Grund: Verschiebungsstrom << Leitungsstrom)

Dielektrische Dispersion

Annahme: μ=1

Betrachte nun zeitliche Dispersion, also

χ^(ω):P¯^(ω)=ε0χ^(ω)E¯^(ω)

mit:

χ^(ω)=12πdtχ(t)eiωt

dynamische elektrische Suszeptibilität

Fourier- Trafo:

P¯(r¯,t)=12πdωP¯^(r¯,ω)eiωtE¯^(r¯,ω)=12πdtE¯(r¯,t)e+iωtP¯(r¯,t)=12πdωε0χ^(ω)dt´E¯(r¯,t´)e+iω(t´t)

Betrachte:

12πdωε0χ^(ω)dt´e+iω(t´t):=ε02πχ(tt´)P¯(r¯,t)=12πdωε0χ^(ω)dt´E¯(r¯,t´)e+iω(t´t)=ε02πtdt´χ(tt´)E¯(r¯,t´)

Nachwirkungseffekt: Faltungsintegral -> Berücksichtigung des Nachwirkungseffekts über Faltungsintegral.

Nebenbemerkung: Kausalität verlangt:

χ(tt´)=0fu¨rt´>t

Aus mikroskopischen Modellen folgt i.A. ein komplexes χ^(ω)C

  • Komplexe dielektrische Funktion:

ε(ω)=1+χ^(ω)=ε´(ω)+iε´´(ω)ε´,ε´´R

Aus:

ε(ω)=1+12π0dtχ(t)eiωtε*(ω)=ε(ω)ε´(ω)=ε´(ω)ε´´(ω)=ε´´(ω)

Monochromatische ebene Welle:

E¯(r¯,t)=E¯0ei(k¯r¯ωt)k2=ε(ω)ω2c2(1+i1ωτ)

Isolator ( dispersives Dielektrikum)

E¯(r¯,t)=E¯0ei(k¯r¯ωt)k2=ε(ω)ω2c2

n~(ω)=n(ω)+iγ(ω)n~(ω)2=ε(ω)ε´+iε´´ε´(ω)=n2γ2ε´´(ω)=2nγγn}=12(ε´2+ε´´2ε´)12

Dabei

γn}=12(ε´2+ε´´2ε´)12

Als Absorptionskoeffizient γ ( reeller Brechungsindex n)

Absorption

ε´´=0γ=0,n=ε´

Absorptionskoeffizient Null, reeller Brechungsindex: Wurzel epsilon Also: für ε´>0 -> ungedämpfte Welle

ε´´>0γ>0

  • in jedem Fall gedämpfte Welle ( Energiedissipation).

Der Frequenzbereich mit

ε´´<<ε´ heißt Transparenzgebiet der Substanz ( besonders wenig Absorption).

Dispersion

Rek=k´=ωcn(ω) nichtlineare Dispersion ( nur in erster Näherung ist n(w) linear !)

  • Definition der Gruppengeschwindigkeit:

vg:=dωdk´=1dk´dω=cd(ωn)dωvg=cn+ωdndωcn(ω)=vph.

Typische Frequenzabhängigkeit: ( sogenanntes Resonanzverhalten):


Normale Dispersion

dndω>0

Stets im Transparenzgebiet, also wenn ε´´~0

vg<vph.

Anormale Dispersion

dndω<0 bei Absorption !

Beziehung zwischen ε´(ω) und ε´´(ω)

Kramers- Kronig- Relation

  • Allgemein gültiger Zusammenhang zwischen Dispersion
  • n(ω)
  • und Absorption
  • γ(ω)
  • .
  • erlaubt z.B. dann die Berechnung von Dispersionsrelationen aus dem Absorptionsspektrum und auch umgekehrt
  • Folgt alleine aus dem Kausalitätsprinzip !

Beweis ( Funktionenthorie)

Für kausale Funktion gilt:

χ(t)=Θ(t)χ(t)Θ(t)={0t<01t0 Heavyside

Fourier- Trafo:

χ^(ω)=12πdω´Θ(ωω´)χ^(ω´)

Θ^(ω):=limσ>0+12π0dteiωtσt=limσ>0+12π1iωσ

Mit dem konvergenzerzeugenden Faktor σ

Also:

χ^(ω)=12πilimσ>0+dω´1ω´ωiσχ^(ω´)

Der Integrand hat einen Pol für

ω´=ω+iσ

Also:

Äquivalenter Integrationsweg:

Zerlegung:

dω´1ω´ωχ^(ω´)=limε>0+[ωε+ω+ε]dω´1ω´ωχ^(ω´)+Kreisbogendω´1ω´ωχ^(ω´)

Man sagt:

limε>0+[ωε+ω+ε]dω´1ω´ωχ^(ω´)=Pdω´1ω´ωχ^(ω´)

= Hauptwertintegral ( principal Value), entsteht nur direkt an der Polstelle !

Kreisbogendω´1ω´ωχ^(ω´)

Integral längs des Halbkreis mit Radius ε um den Pol !

Kreisbogendsf(s)s=f(0)Kreisbogendsss=εeiϕds=isdϕf(0)Kreisbogendss=f(0)i0πdϕ=iπf(0)

sogenanntes " Halbes Residuum!"

Also:

χ^(ω)=12πilimσ>0+dω´1ω´ωiσχ^(ω´)=12πiPdω´1ω´ωχ^(ω´)+12χ^(ω)χ^(ω)=1πiPdω´1ω´ωχ^(ω´)

Nun: Zerlegung in Re und Im mit

Reχ^(ω)=ε´(ω)1Imχ^(ω)=ε´´(ω)

Also:

Reχ^(ω)=ε´(ω)1=1πPdω´1ω´ωε´´(ω´)Imχ^(ω)=ε´´(ω)=1πPdω´1ω´ω(ε´(ω´)1)

Dies ist die Kramers- Kronig- Relation. Sie verknüpft Real- und Imaginärteil des komplexen Brechungsindex miteinander !

Titchmask- Theorem:

χ^(z) sollte regulär sein auf der oberen komplexen z- Halbebene Somit:

χ^(z)0 für Imz

Brechung und Reflexion

Wir haben bereits gesehen, wie man aus den Stetigkeitsbedingungen mit Hilfe der integralen Maxwellgleichungen die Brechungsrelationen für die Feldvektoren herleiten kann. Nun soll dies für Lichtwellen wiederholt / vertieft werden:


Sogenannte Wellenausbreitung in geschichteten Medien Transparent -> εiR

ωc1=|k¯|=|k¯´|=ω´c1|k¯´´|=ω´´c2ci=cni=cεii=1,2E¯(r¯,t)=E¯0ei(k¯r¯ωt)

Einfallende Welle:

E¯(r¯,t)=E¯0ei(k¯r¯ωt)

Reflektierte Welle:

E¯´(r¯,t)=E¯0´ei(k¯´r¯ω´t)

Transmittierte Welle:

E¯´´(r¯,t)=E¯0´´ei(k¯´´r¯ω´´t)

Grenzbedingungen für E¯(r¯,t) . Annahme: linear polarisiert:

E1+E1´|x3=0=E1´´|x3=0 -> Stetigkeit der Tangenzialkomponenten Diese Bedingungen werden nur an die Amplituden gestellt. Für die Phasen gibt es keine Bedingungen, besser gesagt:

Betrachte Situation für r=0

E¯01eiωt+E¯01´eiω´t=E¯01´´eiω´´tω=ω´=ω´´E¯01+E¯01´=E¯01´´

Das Snelliussche Brechungsgesetz können wir uns nicht als Amplitudenverhältnis anschauen, weil wir sonst wieder nur die Brechung der elektrischen Feldvektoren gewinnen. Aber: Wenn man ein Verhältnis der Beträge der k- Vektoren ( Ausbreitungsrichtung des Energiestroms) betrachtet, so ergibt sich das richtige Ausbreitungsgesetz:

Betrachte für t=0

E01eik1x1+E01´eik´1x1=E01´´eik1´´x1

Also:

k1=k1´=k1´´

Aber: ( Siehe Skizze) ! Dies gilt ja genau für die Anteile entlang x^1, also: muss man den Winkel dazunehmen und man gewinnt:

|k¯|sinγ=|k¯´|sinγ´=|k¯´´|sinγ´´|k¯|=ωc1|k¯´|=ωc1|k¯´´|=ωc2

Somit gewinnen wir Reflexions und Snelliussches Brechungsgesetz:

sinγ=sinγ´sinγ´´sinγ=c2c1=n1n2

Reflexions- und Brechungsgesetz

Bestimmung der Amplituden:

  1. Polarisation von E in der Einfallsebene

Stetigkeitsbedingungen: Normalkomponenten sind keine vorhanden -> Nur Tangentialkomponenten:

E01=E01´=E01´´=0E03=E03´=E03´´=0

Für die Tangentialkomp.:

E02+E02´=E02´´

Mit

B¯0=cωk¯×E¯0=cωE02(k30k1)

Somit folgt dann für die Tangentialkomponente von B:

B01+B01´=B01´´k3E02+k3´E´02=k3´´E02´´

mit dem Reflexionsgesetz.

k3=k3´

k3(E02E´02)=k3´´(E02+E02´)E´02E02=k3k3´´k3+k3´´E´´02E02=2k3k3+k3´´

Man muss nun nur k3´´ über den Brechungswinkel γ´´ ausdrücken und man gewinnt die Fresnelschen Formeln:

k3´´=|k¯´´|cosγ´´=|k¯´|n2n1cosγ´´n2n1=sinγsinγ´´k3´´=|k¯´´|cosγ´´=|k¯´|sinγsinγ´´cosγ´´k3=|k¯|cosγ

Also können wir dies in die gefundenen Formeln für die Amplitudenverhältnisse einsetzen und erhalten die Brechungsformeln ( Fresnelsche Formeln) nur noch in Abhängigkeit von den Winkeln:

Also:

E´02E02=cosγsinγ´´sinγcosγ´´cosγsinγ´´+sinγcosγ´´=sin(γ´´γ)sin(γ´´+γ)E´´02E02=2k3k3+k3´´=2sin(γ´´)cosγsin(γ´´+γ)

Intensitätsverhältnisse:

betrachte: Zeitmittel des Poynting- Vektors:

S¯=1T0Tdt(E¯×H¯)

Reflexionskoeffizient: ( bei senkrechter Polarisation)

R=|E´02E02|2=sin2(γ´´γ)sin2(γ´´+γ)

Transmissionskoeffizient ( bei senkrechter Polarisation)

T=|E´´02E02|2=4sin2(γ´´)cos2γsin2(γ´´+γ)=1R

  1. Polarisation von
  2. E¯||
  3. Einfallsebene:

Dadurch: B¯ Einfallsebene

  • Analoge Argumentation:

B01=B01´=B01´´=0B03=B03´=B03´´=0B02+B02´=B02´´

usw... ebenfalls Bildung der Verhältnisse in Abhängigkeit von k -> wie beim Vorgehen in a) weiter rechnen. k durch Zwischenwinkel ausdrücken: Zur Übung berechnen, es ergibt sich:

E´||E||=tan(γ´´γ)tan(γ´´+γ)E´´||E||=2sin(γ´´)cosγsin(γ´´+γ)cos(γ´´γ)

Ebenso:

R||=|E´||E|||2=tan2(γ´´γ)tan2(γ´´+γ)=1T||

Bemerkung Bei Reflexion und Brechung wird im Allgemeinen die Polarisationsrichtung gedreht. Speziell für den Fall

γ´´+γ=π2>tan(γ´´+γ)R||=0

In diesem Fall kommt es nicht zu Teilpolarisation sondern: die reflektierte Welle wird vollständig polarisiert ( senkrecht zur Einfallsebene)

Totalreflexion Sei

ε2<ε1sinγG=ε2ε1

Totalreflexion unter diesem Winkel oder flacher !

Grenzwinkel der Totalreflexion -> γ´´=π2

R=R||=1T=T||=0

ε2<ε1γ>γG

k´´ wird imaginär -> es dringt kein reeller Strahl mehr ins Medium ein !