Hamiltonsches Prinzip: Difference between revisions

From testwiki
Jump to navigation Jump to search
*>SchuBot
m spezielle Form: Pfeile einfügen, replaced: --> → → (2)
 
(6 intermediate revisions by 2 users not shown)
Line 9: Line 9:
* unabhängig von Koordinatenwahl
* unabhängig von Koordinatenwahl
* Allgemein  
* Allgemein  
<math>\delta S=\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( \delta T-\delta A \right)dt}=0</math>
:<math>\delta S=\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( \delta T-\delta A \right)dt}=0</math> mit <math>\delta A=\sum\limits_{i}{{{\underline{X}}_{i}}\delta \underline{{{r}_{i}}}}</math>
mit  
<math>\delta A=\sum\limits_{i}{{{\underline{X}}_{i}}\delta \underline{{{r}_{i}}}}</math>
== spezielle Form==
== spezielle Form==
* holonome [[Zwangsbedingungen]] --> generalisierte Koordinaten
* holonome [[Zwangsbedingungen]] generalisierte Koordinaten
* konservative Kräfte --> <math>L=T-V</math>
* konservative Kräfte <math>L=T-V</math>
führt zur Wirkung <math>S\left[ q \right]:=\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{L\left( q,\dot{q},t \right)dt}</math>
führt zur Wirkung <math>S\left[ q \right]:=\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{L\left( q,\dot{q},t \right)dt}</math>


[[FragenID::M1]]
[[FragenID::M1]]
=Herleitung der Euler-Lagrange-Gleichungen=
=Herleitung der Euler-Lagrange-Gleichungen=
<math>\begin{align}
:<math>\begin{align}
   \delta S\left[ q \right] & =\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\delta L\left( q,\dot{q},t \right)dt} \\  
   \delta S\left[ q \right] & =\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\delta L\left( q,\dot{q},t \right)dt} \\  
  & =\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( {{\partial }_{q}}L\delta q+{{\partial }_{{\dot{q}}}}L\delta \dot{q} \right)dt}   
  & =\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( {{\partial }_{q}}L\delta q+{{\partial }_{{\dot{q}}}}L\delta \dot{q} \right)dt}   
\end{align}</math>
\end{align}</math> oder <math>\begin{align}
 
oder
 
<math>\begin{align}
   \delta S\left[ q \right] & =S\left[ {{q}_{0}} \right]-\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{L\left( q+\delta q,\dot{q}+\delta \dot{q},t \right)dt} \\  
   \delta S\left[ q \right] & =S\left[ {{q}_{0}} \right]-\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{L\left( q+\delta q,\dot{q}+\delta \dot{q},t \right)dt} \\  
  & =S\left[ {{q}_{0}} \right]-\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( \underbrace{L}_{=S\left[ {{q}_{0}} \right]}+{{\partial }_{q}}L\delta q+{{\partial }_{{\dot{q}}}}L\delta \dot{q} \right)dt} \\  
  & =S\left[ {{q}_{0}} \right]-\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( \underbrace{L}_{=S\left[ {{q}_{0}} \right]}+{{\partial }_{q}}L\delta q+{{\partial }_{{\dot{q}}}}L\delta \dot{q} \right)dt} \\  
Line 33: Line 27:


mit partieller Integration (<math>\int{u'v=uv-\int{v'u}}</math>) mit  
mit partieller Integration (<math>\int{u'v=uv-\int{v'u}}</math>) mit  
<math>u=\delta q,v={{\partial }_{{\dot{q}}}}L</math>
:<math>u=\delta q,v={{\partial }_{{\dot{q}}}}L</math>






<math>{{\partial }_{{\dot{q}}}}L\delta \dot{q}={{d}_{t}}\left( {{\partial }_{{\dot{q}}}}L\delta q \right)-{{d}_{t}}\left( {{\partial }_{{\dot{q}}}}L \right)\delta q</math>


:<math>{{\partial }_{{\dot{q}}}}L\delta \dot{q}={{d}_{t}}\left( {{\partial }_{{\dot{q}}}}L\delta q \right)-{{d}_{t}}\left( {{\partial }_{{\dot{q}}}}L \right)\delta q</math>


<math>\delta S\left[ q \right]=--\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( {{\partial }_{q}}L\delta q-{{d}_{t}}\left( {{\partial }_{{\dot{q}}}}L \right)\delta q \right)dt}</math>






<math>\begin{align}
 
  & \delta S\left[ q \right]=--\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( {{\partial }_{q}}L\delta q-{{d}_{t}}\left( {{\partial }_{{\dot{q}}}}L \right)\delta q \right)dt} \\  
:<math>\begin{align}
  \delta S\left[ q \right] & =- \cancel {\left[ {{\partial }_{{\dot{q}}}}L\delta q \right]_{{{t}_{1}}}^{{{t}_{2}}}} -\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( {{\partial }_{q}}L\delta q-{{d}_{t}}\left( {{\partial }_{{\dot{q}}}}L \right)\delta q \right)dt} \\  
  & =\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( {{d}_{t}}{{\partial }_{{\dot{q}}}}-{{\partial }_{q}} \right)L\delta qdt}   
  & =\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( {{d}_{t}}{{\partial }_{{\dot{q}}}}-{{\partial }_{q}} \right)L\delta qdt}   
\end{align}</math>
\end{align}</math>




<math>\left( {{d}_{t}}{{\partial }_{{\dot{q}}}}-{{\partial }_{q}} \right)L=0</math>
:<math>\left( {{d}_{t}}{{\partial }_{{\dot{q}}}}-{{\partial }_{q}} \right)L=0</math>
 
[[FrageID::M2]]
[[Kategorie:Mechanik]]
[[Kategorie:Mechanik]]

Latest revision as of 20:50, 12 September 2010

auch Prinzip der kleinsten Wirkung genannt

  • Variation der ganzen Bahn im Konfigurationsraum <> Gegensatz d'Ambertsches Prinzip
  • Wirkung (S) wird extrenmal (minimal) δS=0
  • Start und Zielpunkt (q,t) sind fest vorgegeben (hier keine Variation)
  • Zeit wird nicht mitvarieiert δt=0
  • Vergleich ART Teilchen Bewegt sich auf Geodäten <> aber nicht im Ereignisraum
  • q_(t),q_(t)C2 (2 fach stetig diffb. Funktionen)
  • unabhängig von Koordinatenwahl
  • Allgemein
δS=t1t2(δTδA)dt=0 mit δA=iX_iδri_

spezielle Form[edit | edit source]

führt zur Wirkung S[q]:=t1t2L(q,q˙,t)dt

FragenID::M1

Herleitung der Euler-Lagrange-Gleichungen[edit | edit source]

δS[q]=t1t2δL(q,q˙,t)dt=t1t2(qLδq+q˙Lδq˙)dt oder δS[q]=S[q0]t1t2L(q+δq,q˙+δq˙,t)dt=S[q0]t1t2(L=S[q0]+qLδq+q˙Lδq˙)dt=t1t2(qLδq+q˙Lδq˙)dt

mit partieller Integration (uv=uvvu) mit

u=δq,v=q˙L



q˙Lδq˙=dt(q˙Lδq)dt(q˙L)δq



δS[q]=[q˙Lδq]t1t2t1t2(qLδqdt(q˙L)δq)dt=t1t2(dtq˙q)Lδqdt


(dtq˙q)L=0

FrageID::M2 Kategorie:Mechanik