Hamiltonsches Prinzip: Difference between revisions

From testwiki
Jump to navigation Jump to search
No edit summary
*>SchuBot
m →‎spezielle Form: Pfeile einfügen, replaced: --> → → (2)
 
(10 intermediate revisions by 2 users not shown)
Line 9: Line 9:
* unabhängig von Koordinatenwahl
* unabhängig von Koordinatenwahl
* Allgemein  
* Allgemein  
<math>\delta S=\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( \delta T-\delta A \right)dt}=0</math>
:<math>\delta S=\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( \delta T-\delta A \right)dt}=0</math> mit <math>\delta A=\sum\limits_{i}{{{\underline{X}}_{i}}\delta \underline{{{r}_{i}}}}</math>
mit  
<math>\delta A=\sum\limits_{i}{{{\underline{X}}_{i}}\delta \underline{{{r}_{i}}}}</math>
== spezielle Form==
== spezielle Form==
* holonome [[Zwangsbedingungen]] --> generalisierte Koordinaten
* holonome [[Zwangsbedingungen]] generalisierte Koordinaten
* konservative Kräfte --> <math>L=T-V</math>
* konservative Kräfte <math>L=T-V</math>
führt zur Wirkung <math>S\left[ q \right]:=\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{L\left( q,\dot{q},t \right)dt}</math>
führt zur Wirkung <math>S\left[ q \right]:=\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{L\left( q,\dot{q},t \right)dt}</math>
[[FragenID::M1]]
=Herleitung der Euler-Lagrange-Gleichungen=
:<math>\begin{align}
  \delta S\left[ q \right] & =\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\delta L\left( q,\dot{q},t \right)dt} \\
& =\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( {{\partial }_{q}}L\delta q+{{\partial }_{{\dot{q}}}}L\delta \dot{q} \right)dt} 
\end{align}</math> oder <math>\begin{align}
  \delta S\left[ q \right] & =S\left[ {{q}_{0}} \right]-\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{L\left( q+\delta q,\dot{q}+\delta \dot{q},t \right)dt} \\
& =S\left[ {{q}_{0}} \right]-\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( \underbrace{L}_{=S\left[ {{q}_{0}} \right]}+{{\partial }_{q}}L\delta q+{{\partial }_{{\dot{q}}}}L\delta \dot{q} \right)dt} \\
& =-\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( {{\partial }_{q}}L\delta q+{{\partial }_{{\dot{q}}}}L\delta \dot{q} \right)dt} 
\end{align}</math>
mit partieller Integration (<math>\int{u'v=uv-\int{v'u}}</math>) mit
:<math>u=\delta q,v={{\partial }_{{\dot{q}}}}L</math>
:<math>{{\partial }_{{\dot{q}}}}L\delta \dot{q}={{d}_{t}}\left( {{\partial }_{{\dot{q}}}}L\delta q \right)-{{d}_{t}}\left( {{\partial }_{{\dot{q}}}}L \right)\delta q</math>




[[FragenID::M1]]
:<math>\begin{align}
  \delta S\left[ q \right] & =- \cancel {\left[ {{\partial }_{{\dot{q}}}}L\delta q \right]_{{{t}_{1}}}^{{{t}_{2}}}} -\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( {{\partial }_{q}}L\delta q-{{d}_{t}}\left( {{\partial }_{{\dot{q}}}}L \right)\delta q \right)dt} \\
& =\int\limits_{{{t}_{1}}}^{{{t}_{2}}}{\left( {{d}_{t}}{{\partial }_{{\dot{q}}}}-{{\partial }_{q}} \right)L\delta qdt} 
\end{align}</math>
 


:<math>\left( {{d}_{t}}{{\partial }_{{\dot{q}}}}-{{\partial }_{q}} \right)L=0</math>
[[FrageID::M2]]
[[Kategorie:Mechanik]]
[[Kategorie:Mechanik]]

Latest revision as of 21:50, 12 September 2010

auch Prinzip der kleinsten Wirkung genannt

mit

spezielle Form[edit | edit source]

führt zur Wirkung

FragenID::M1

Herleitung der Euler-Lagrange-Gleichungen[edit | edit source]

oder

mit partieller Integration () mit






FrageID::M2 Kategorie:Mechanik