Brechung und Reflexion: Difference between revisions

From testwiki
Jump to navigation Jump to search
Die Seite wurde neu angelegt: „<noinclude>{{Scripthinweis|Elektrodynamik|5|6}}</noinclude> Wir haben bereits gesehen, wie man aus den Stetigkeitsbedingungen mit Hilfe der integralen Maxwellgle…“
 
*>SchuBot
m Interpunktion, replaced: ! → ! (3), ( → ( (6)
 
(2 intermediate revisions by the same user not shown)
Line 5: Line 5:


Sogenannte Wellenausbreitung in geschichteten Medien
Sogenannte Wellenausbreitung in geschichteten Medien
Transparent ->
Transparent
<math>{{\varepsilon }_{i}}\in R</math>
:<math>{{\varepsilon }_{i}}\in R</math>


<math>\begin{align}
:<math>\begin{align}
& \frac{\omega }{{{c}_{1}}}=\left| {\bar{k}} \right|=\left| \bar{k}\acute{\ } \right|=\frac{\omega \acute{\ }}{{{c}_{1}}} \\
& \frac{\omega }{{{c}_{1}}}=\left| {\bar{k}} \right|=\left| \bar{k}\acute{\ } \right|=\frac{\omega \acute{\ }}{{{c}_{1}}} \\
& \left| \bar{k}\acute{\ }\acute{\ } \right|=\frac{\omega \acute{\ }\acute{\ }}{{{c}_{2}}} \\
& \left| \bar{k}\acute{\ }\acute{\ } \right|=\frac{\omega \acute{\ }\acute{\ }}{{{c}_{2}}} \\
Line 17: Line 17:
Einfallende Welle:
Einfallende Welle:


<math>\bar{E}(\bar{r},t)={{\bar{E}}_{0}}{{e}^{i\left( \bar{k}\bar{r}-\omega t \right)}}</math>
:<math>\bar{E}(\bar{r},t)={{\bar{E}}_{0}}{{e}^{i\left( \bar{k}\bar{r}-\omega t \right)}}</math>


Reflektierte Welle:
Reflektierte Welle:


<math>\bar{E}\acute{\ }(\bar{r},t)={{\bar{E}}_{0}}\acute{\ }{{e}^{i\left( \bar{k}\acute{\ }\bar{r}-\omega \acute{\ }t \right)}}</math>
:<math>\bar{E}\acute{\ }(\bar{r},t)={{\bar{E}}_{0}}\acute{\ }{{e}^{i\left( \bar{k}\acute{\ }\bar{r}-\omega \acute{\ }t \right)}}</math>


Transmittierte Welle:
Transmittierte Welle:


<math>\bar{E}\acute{\ }\acute{\ }(\bar{r},t)={{\bar{E}}_{0}}\acute{\ }\acute{\ }{{e}^{i\left( \bar{k}\acute{\ }\acute{\ }\bar{r}-\omega \acute{\ }\acute{\ }t \right)}}</math>
:<math>\bar{E}\acute{\ }\acute{\ }(\bar{r},t)={{\bar{E}}_{0}}\acute{\ }\acute{\ }{{e}^{i\left( \bar{k}\acute{\ }\acute{\ }\bar{r}-\omega \acute{\ }\acute{\ }t \right)}}</math>


<u>'''Grenzbedingungen für'''</u>
<u>'''Grenzbedingungen für'''</u>
<math>\bar{E}(\bar{r},t)</math>
:<math>\bar{E}(\bar{r},t)</math>.
. Annahme: linear polarisiert:
Annahme: linear polarisiert:


<math>{{\left. {{E}_{1}}+{{E}_{1}}\acute{\ } \right|}_{{{x}_{3}}=0}}={{\left. {{E}_{1}}\acute{\ }\acute{\ } \right|}_{{{x}_{3}}=0}}</math>
:<math>{{\left. {{E}_{1}}+{{E}_{1}}\acute{\ } \right|}_{{{x}_{3}}=0}}={{\left. {{E}_{1}}\acute{\ }\acute{\ } \right|}_{{{x}_{3}}=0}}</math>
-> Stetigkeit der Tangenzialkomponenten
Stetigkeit der Tangenzialkomponenten
Diese Bedingungen werden nur an die Amplituden gestellt. Für die Phasen gibt es keine Bedingungen, besser gesagt:
Diese Bedingungen werden nur an die Amplituden gestellt. Für die Phasen gibt es keine Bedingungen, besser gesagt:


Betrachte Situation für r=0
Betrachte Situation für r=0


<math>\begin{align}
:<math>\begin{align}
& {{{\bar{E}}}_{01}}{{e}^{i\omega t}}+{{{\bar{E}}}_{01}}\acute{\ }{{e}^{i\omega \acute{\ }t}}={{{\bar{E}}}_{01}}\acute{\ }\acute{\ }{{e}^{i\omega \acute{\ }\acute{\ }t}} \\
& {{{\bar{E}}}_{01}}{{e}^{i\omega t}}+{{{\bar{E}}}_{01}}\acute{\ }{{e}^{i\omega \acute{\ }t}}={{{\bar{E}}}_{01}}\acute{\ }\acute{\ }{{e}^{i\omega \acute{\ }\acute{\ }t}} \\
& \Rightarrow \omega =\omega \acute{\ }=\omega \acute{\ }\acute{\ } \\
& \Rightarrow \omega =\omega \acute{\ }=\omega \acute{\ }\acute{\ } \\
Line 44: Line 44:


Das Snelliussche Brechungsgesetz können wir uns nicht als Amplitudenverhältnis anschauen, weil wir sonst wieder nur die Brechung der elektrischen Feldvektoren gewinnen.
Das Snelliussche Brechungsgesetz können wir uns nicht als Amplitudenverhältnis anschauen, weil wir sonst wieder nur die Brechung der elektrischen Feldvektoren gewinnen.
Aber: Wenn man ein Verhältnis der Beträge der k- Vektoren ( Ausbreitungsrichtung des Energiestroms) betrachtet, so ergibt sich das richtige Ausbreitungsgesetz:
Aber: Wenn man ein Verhältnis der Beträge der k- Vektoren (Ausbreitungsrichtung des Energiestroms) betrachtet, so ergibt sich das richtige Ausbreitungsgesetz:


Betrachte für t=0
Betrachte für t=0


<math>{{E}_{01}}{{e}^{i{{k}_{1}}{{x}_{1}}}}+{{E}_{01}}\acute{\ }{{e}^{ik{{\acute{\ }}_{1}}{{x}_{1}}}}={{E}_{01}}\acute{\ }\acute{\ }{{e}^{i{{k}_{1}}\acute{\ }\acute{\ }{{x}_{1}}}}</math>
:<math>{{E}_{01}}{{e}^{i{{k}_{1}}{{x}_{1}}}}+{{E}_{01}}\acute{\ }{{e}^{ik{{\acute{\ }}_{1}}{{x}_{1}}}}={{E}_{01}}\acute{\ }\acute{\ }{{e}^{i{{k}_{1}}\acute{\ }\acute{\ }{{x}_{1}}}}</math>


Also:
Also:


<math>{{k}_{1}}={{k}_{1}}\acute{\ }={{k}_{1}}\acute{\ }\acute{\ }</math>
:<math>{{k}_{1}}={{k}_{1}}\acute{\ }={{k}_{1}}\acute{\ }\acute{\ }</math>


Aber: ( Siehe Skizze) ! Dies gilt ja genau für die Anteile entlang x^1, also:
Aber: (Siehe Skizze)! Dies gilt ja genau für die Anteile entlang x^1, also:
muss man den Winkel dazunehmen und man gewinnt:
muss man den Winkel dazunehmen und man gewinnt:


<math>\begin{align}
:<math>\begin{align}
& \left| {\bar{k}} \right|\sin \gamma =\left| \bar{k}\acute{\ } \right|\sin \gamma \acute{\ }=\left| \bar{k}\acute{\ }\acute{\ } \right|\sin \gamma \acute{\ }\acute{\ } \\
& \left| {\bar{k}} \right|\sin \gamma =\left| \bar{k}\acute{\ } \right|\sin \gamma \acute{\ }=\left| \bar{k}\acute{\ }\acute{\ } \right|\sin \gamma \acute{\ }\acute{\ } \\
& \left| {\bar{k}} \right|=\frac{\omega }{{{c}_{1}}} \\
& \left| {\bar{k}} \right|=\frac{\omega }{{{c}_{1}}} \\
Line 66: Line 66:
Somit gewinnen wir Reflexions und Snelliussches Brechungsgesetz:
Somit gewinnen wir Reflexions und Snelliussches Brechungsgesetz:


<math>\begin{align}
:<math>\begin{align}
& \sin \gamma =\sin \gamma \acute{\ } \\
& \sin \gamma =\sin \gamma \acute{\ } \\
& \frac{\sin \gamma \acute{\ }\acute{\ }}{\sin \gamma }=\frac{{{c}_{2}}}{{{c}_{1}}}=\frac{{{n}_{1}}}{{{n}_{2}}} \\
& \frac{\sin \gamma \acute{\ }\acute{\ }}{\sin \gamma }=\frac{{{c}_{2}}}{{{c}_{1}}}=\frac{{{n}_{1}}}{{{n}_{2}}} \\
Line 76: Line 76:


# <u>'''Polarisation von E in der Einfallsebene'''</u>
# <u>'''Polarisation von E in der Einfallsebene'''</u>
Stetigkeitsbedingungen: Normalkomponenten sind keine vorhanden -> Nur Tangentialkomponenten:
Stetigkeitsbedingungen: Normalkomponenten sind keine vorhanden Nur Tangentialkomponenten:


<math>\begin{align}
:<math>\begin{align}
& {{E}_{01}}={{E}_{01}}\acute{\ }={{E}_{01}}\acute{\ }\acute{\ }=0 \\
& {{E}_{01}}={{E}_{01}}\acute{\ }={{E}_{01}}\acute{\ }\acute{\ }=0 \\
& {{E}_{03}}={{E}_{03}}\acute{\ }={{E}_{03}}\acute{\ }\acute{\ }=0 \\
& {{E}_{03}}={{E}_{03}}\acute{\ }={{E}_{03}}\acute{\ }\acute{\ }=0 \\
Line 85: Line 85:
Für die Tangentialkomp.:
Für die Tangentialkomp.:


<math>{{E}_{02}}+{{E}_{02}}\acute{\ }={{E}_{02}}\acute{\ }\acute{\ }</math>
:<math>{{E}_{02}}+{{E}_{02}}\acute{\ }={{E}_{02}}\acute{\ }\acute{\ }</math>


Mit
Mit


<math>{{\bar{B}}_{0}}=\frac{c}{\omega }\bar{k}\times {{\bar{E}}_{0}}=\frac{c}{\omega }{{E}_{02}}\left( \begin{matrix}
:<math>{{\bar{B}}_{0}}=\frac{c}{\omega }\bar{k}\times {{\bar{E}}_{0}}=\frac{c}{\omega }{{E}_{02}}\left( \begin{matrix}
-{{k}_{3}}  \\
-{{k}_{3}}  \\
0  \\
0  \\
Line 97: Line 97:
Somit folgt dann für die Tangentialkomponente von B:
Somit folgt dann für die Tangentialkomponente von B:


<math>{{B}_{01}}+{{B}_{01}}\acute{\ }={{B}_{01}}\acute{\ }\acute{\ }\Rightarrow {{k}_{3}}{{E}_{02}}+{{k}_{3}}\acute{\ }E{{\acute{\ }}_{02}}={{k}_{3}}\acute{\ }\acute{\ }{{E}_{02}}\acute{\ }\acute{\ }</math>
:<math>{{B}_{01}}+{{B}_{01}}\acute{\ }={{B}_{01}}\acute{\ }\acute{\ }\Rightarrow {{k}_{3}}{{E}_{02}}+{{k}_{3}}\acute{\ }E{{\acute{\ }}_{02}}={{k}_{3}}\acute{\ }\acute{\ }{{E}_{02}}\acute{\ }\acute{\ }</math>


mit dem Reflexionsgesetz.
mit dem Reflexionsgesetz.


<math>{{k}_{3}}=-{{k}_{3}}\acute{\ }</math>
:<math>{{k}_{3}}=-{{k}_{3}}\acute{\ }</math>


<math>\begin{align}
:<math>\begin{align}
& \Rightarrow {{k}_{3}}\left( {{E}_{02}}-E{{\acute{\ }}_{02}} \right)={{k}_{3}}\acute{\ }\acute{\ }\left( {{E}_{02}}+{{E}_{02}}\acute{\ } \right) \\
& \Rightarrow {{k}_{3}}\left( {{E}_{02}}-E{{\acute{\ }}_{02}} \right)={{k}_{3}}\acute{\ }\acute{\ }\left( {{E}_{02}}+{{E}_{02}}\acute{\ } \right) \\
& \Rightarrow \frac{E{{\acute{\ }}_{02}}}{{{E}_{02}}}=\frac{{{k}_{3}}-{{k}_{3}}\acute{\ }\acute{\ }}{{{k}_{3}}+{{k}_{3}}\acute{\ }\acute{\ }} \\
& \Rightarrow \frac{E{{\acute{\ }}_{02}}}{{{E}_{02}}}=\frac{{{k}_{3}}-{{k}_{3}}\acute{\ }\acute{\ }}{{{k}_{3}}+{{k}_{3}}\acute{\ }\acute{\ }} \\
Line 110: Line 110:


Man muss nun  nur
Man muss nun  nur
<math>{{k}_{3}}\acute{\ }\acute{\ }</math>
:<math>{{k}_{3}}\acute{\ }\acute{\ }</math>
über den Brechungswinkel
über den Brechungswinkel
<math>\gamma \acute{\ }\acute{\ }</math>
:<math>\gamma \acute{\ }\acute{\ }</math>
ausdrücken und man gewinnt die Fresnelschen Formeln:
ausdrücken und man gewinnt die Fresnelschen Formeln:


<math>\begin{align}
:<math>\begin{align}
& {{k}_{3}}\acute{\ }\acute{\ }=\left| \bar{k}\acute{\ }\acute{\ } \right|\cos \gamma \acute{\ }\acute{\ }=\left| \bar{k}\acute{\ } \right|\frac{{{n}_{2}}}{{{n}_{1}}}\cos \gamma \acute{\ }\acute{\ } \\
& {{k}_{3}}\acute{\ }\acute{\ }=\left| \bar{k}\acute{\ }\acute{\ } \right|\cos \gamma \acute{\ }\acute{\ }=\left| \bar{k}\acute{\ } \right|\frac{{{n}_{2}}}{{{n}_{1}}}\cos \gamma \acute{\ }\acute{\ } \\
& \frac{{{n}_{2}}}{{{n}_{1}}}=\frac{\sin \gamma }{\sin \gamma \acute{\ }\acute{\ }} \\
& \frac{{{n}_{2}}}{{{n}_{1}}}=\frac{\sin \gamma }{\sin \gamma \acute{\ }\acute{\ }} \\
Line 122: Line 122:
\end{align}</math>
\end{align}</math>


Also können wir dies in die gefundenen Formeln für die Amplitudenverhältnisse einsetzen und erhalten die Brechungsformeln ( Fresnelsche Formeln) nur noch in Abhängigkeit von den Winkeln:
Also können wir dies in die gefundenen Formeln für die Amplitudenverhältnisse einsetzen und erhalten die Brechungsformeln (Fresnelsche Formeln) nur noch in Abhängigkeit von den Winkeln:


Also:
Also:


<math>\begin{align}
:<math>\begin{align}
& \frac{E{{\acute{\ }}_{02}}}{{{E}_{02}}}=\frac{\cos \gamma \sin \gamma \acute{\ }\acute{\ }-\sin \gamma \cos \gamma \acute{\ }\acute{\ }}{\cos \gamma \sin \gamma \acute{\ }\acute{\ }+\sin \gamma \cos \gamma \acute{\ }\acute{\ }}=\frac{\sin \left( \gamma \acute{\ }\acute{\ }-\gamma  \right)}{\sin \left( \gamma \acute{\ }\acute{\ }+\gamma  \right)} \\
& \frac{E{{\acute{\ }}_{02}}}{{{E}_{02}}}=\frac{\cos \gamma \sin \gamma \acute{\ }\acute{\ }-\sin \gamma \cos \gamma \acute{\ }\acute{\ }}{\cos \gamma \sin \gamma \acute{\ }\acute{\ }+\sin \gamma \cos \gamma \acute{\ }\acute{\ }}=\frac{\sin \left( \gamma \acute{\ }\acute{\ }-\gamma  \right)}{\sin \left( \gamma \acute{\ }\acute{\ }+\gamma  \right)} \\
& \frac{E\acute{\ }{{\acute{\ }}_{02}}}{{{E}_{02}}}=\frac{2{{k}_{3}}}{{{k}_{3}}+{{k}_{3}}\acute{\ }\acute{\ }}=\frac{2\sin \left( \gamma \acute{\ }\acute{\ } \right)\cos \gamma }{\sin \left( \gamma \acute{\ }\acute{\ }+\gamma  \right)} \\
& \frac{E\acute{\ }{{\acute{\ }}_{02}}}{{{E}_{02}}}=\frac{2{{k}_{3}}}{{{k}_{3}}+{{k}_{3}}\acute{\ }\acute{\ }}=\frac{2\sin \left( \gamma \acute{\ }\acute{\ } \right)\cos \gamma }{\sin \left( \gamma \acute{\ }\acute{\ }+\gamma  \right)} \\
Line 135: Line 135:
<u>'''betrachte: Zeitmittel des Poynting- Vektors:'''</u>
<u>'''betrachte: Zeitmittel des Poynting- Vektors:'''</u>


<math>\left\langle {\bar{S}} \right\rangle =\frac{1}{T}\int_{0}^{T}{{}}dt\left( \bar{E}\times \bar{H} \right)</math>
:<math>\left\langle {\bar{S}} \right\rangle =\frac{1}{T}\int_{0}^{T}{{}}dt\left( \bar{E}\times \bar{H} \right)</math>


'''Reflexionskoeffizient: ( bei senkrechter Polarisation)'''
'''Reflexionskoeffizient: (bei senkrechter Polarisation)'''


<math>\begin{align}
:<math>\begin{align}
& {{R}_{\bot }}={{\left| \frac{E{{\acute{\ }}_{02}}}{{{E}_{02}}} \right|}^{2}}=\frac{{{\sin }^{2}}\left( \gamma \acute{\ }\acute{\ }-\gamma  \right)}{{{\sin }^{2}}\left( \gamma \acute{\ }\acute{\ }+\gamma  \right)} \\
& {{R}_{\bot }}={{\left| \frac{E{{\acute{\ }}_{02}}}{{{E}_{02}}} \right|}^{2}}=\frac{{{\sin }^{2}}\left( \gamma \acute{\ }\acute{\ }-\gamma  \right)}{{{\sin }^{2}}\left( \gamma \acute{\ }\acute{\ }+\gamma  \right)} \\
&  \\
&  \\
\end{align}</math>
\end{align}</math>


Transmissionskoeffizient ( bei senkrechter Polarisation)
Transmissionskoeffizient (bei senkrechter Polarisation)


<math>{{T}_{\bot }}={{\left| \frac{E\acute{\ }{{\acute{\ }}_{02}}}{{{E}_{02}}} \right|}^{2}}=\frac{4{{\sin }^{2}}\left( \gamma \acute{\ }\acute{\ } \right){{\cos }^{2}}\gamma }{{{\sin }^{2}}\left( \gamma \acute{\ }\acute{\ }+\gamma  \right)}=1-{{R}_{\bot }}</math>
:<math>{{T}_{\bot }}={{\left| \frac{E\acute{\ }{{\acute{\ }}_{02}}}{{{E}_{02}}} \right|}^{2}}=\frac{4{{\sin }^{2}}\left( \gamma \acute{\ }\acute{\ } \right){{\cos }^{2}}\gamma }{{{\sin }^{2}}\left( \gamma \acute{\ }\acute{\ }+\gamma  \right)}=1-{{R}_{\bot }}</math>


# <u>'''Polarisation von'''</u>
# <u>'''Polarisation von'''</u>
Line 152: Line 152:
# Einfallsebene:
# Einfallsebene:
<u>'''Dadurch:'''</u>
<u>'''Dadurch:'''</u>
<math>\bar{B}\bot </math>
:<math>\bar{B}\bot </math>
Einfallsebene
Einfallsebene


* Analoge Argumentation:
* Analoge Argumentation:


<math>\begin{align}
:<math>\begin{align}
& {{B}_{01}}={{B}_{01}}\acute{\ }={{B}_{01}}\acute{\ }\acute{\ }=0 \\
& {{B}_{01}}={{B}_{01}}\acute{\ }={{B}_{01}}\acute{\ }\acute{\ }=0 \\
& {{B}_{03}}={{B}_{03}}\acute{\ }={{B}_{03}}\acute{\ }\acute{\ }=0 \\
& {{B}_{03}}={{B}_{03}}\acute{\ }={{B}_{03}}\acute{\ }\acute{\ }=0 \\
Line 163: Line 163:
\end{align}</math>
\end{align}</math>


usw... ebenfalls Bildung der Verhältnisse  in Abhängigkeit von k -> wie beim Vorgehen in a) weiter rechnen.
usw... ebenfalls Bildung der Verhältnisse  in Abhängigkeit von k wie beim Vorgehen in a) weiter rechnen.
k durch Zwischenwinkel ausdrücken:
k durch Zwischenwinkel ausdrücken:
Zur Übung berechnen, es ergibt sich:
Zur Übung berechnen, es ergibt sich:


<math>\begin{align}
:<math>\begin{align}
& \frac{E{{\acute{\ }}_{||}}}{{{E}_{||}}}=\frac{\tan \left( \gamma \acute{\ }\acute{\ }-\gamma  \right)}{\tan \left( \gamma \acute{\ }\acute{\ }+\gamma  \right)} \\
& \frac{E{{\acute{\ }}_{||}}}{{{E}_{||}}}=\frac{\tan \left( \gamma \acute{\ }\acute{\ }-\gamma  \right)}{\tan \left( \gamma \acute{\ }\acute{\ }+\gamma  \right)} \\
& \frac{E\acute{\ }{{\acute{\ }}_{||}}}{{{E}_{||}}}=\frac{2\sin \left( \gamma \acute{\ }\acute{\ } \right)\cos \gamma }{\sin \left( \gamma \acute{\ }\acute{\ }+\gamma  \right)\cos \left( \gamma \acute{\ }\acute{\ }-\gamma  \right)} \\
& \frac{E\acute{\ }{{\acute{\ }}_{||}}}{{{E}_{||}}}=\frac{2\sin \left( \gamma \acute{\ }\acute{\ } \right)\cos \gamma }{\sin \left( \gamma \acute{\ }\acute{\ }+\gamma  \right)\cos \left( \gamma \acute{\ }\acute{\ }-\gamma  \right)} \\
Line 174: Line 174:
Ebenso:
Ebenso:


<math>\begin{align}
:<math>\begin{align}
& {{R}_{||}}={{\left| \frac{E{{\acute{\ }}_{||}}}{{{E}_{||}}} \right|}^{2}}=\frac{{{\tan }^{2}}\left( \gamma \acute{\ }\acute{\ }-\gamma  \right)}{{{\tan }^{2}}\left( \gamma \acute{\ }\acute{\ }+\gamma  \right)}=1-{{T}_{||}} \\
& {{R}_{||}}={{\left| \frac{E{{\acute{\ }}_{||}}}{{{E}_{||}}} \right|}^{2}}=\frac{{{\tan }^{2}}\left( \gamma \acute{\ }\acute{\ }-\gamma  \right)}{{{\tan }^{2}}\left( \gamma \acute{\ }\acute{\ }+\gamma  \right)}=1-{{T}_{||}} \\
&  \\
&  \\
Line 182: Line 182:
Bei Reflexion und Brechung wird im Allgemeinen die Polarisationsrichtung gedreht. Speziell für den Fall
Bei Reflexion und Brechung wird im Allgemeinen die Polarisationsrichtung gedreht. Speziell für den Fall


<math>\begin{align}
:<math>\begin{align}
& \gamma \acute{\ }\acute{\ }+\gamma =\frac{\pi }{2} \\
& \gamma \acute{\ }\acute{\ }+\gamma =\frac{\pi }{2} \\
& ->\tan \left( \gamma \acute{\ }\acute{\ }+\gamma  \right)\to \infty  \\
& ->\tan \left( \gamma \acute{\ }\acute{\ }+\gamma  \right)\to \infty  \\
Line 188: Line 188:
\end{align}</math>
\end{align}</math>


In diesem Fall kommt es nicht zu Teilpolarisation sondern: die reflektierte Welle wird vollständig polarisiert ( senkrecht zur Einfallsebene)
In diesem Fall kommt es nicht zu Teilpolarisation sondern: die reflektierte Welle wird vollständig polarisiert (senkrecht zur Einfallsebene)
* Dies ist der Brewsterwinkel:
* Dies ist der Brewsterwinkel:
*
*
Line 200: Line 200:
'''Sei'''
'''Sei'''


<math>\begin{align}
:<math>\begin{align}
& {{\varepsilon }_{2}}<{{\varepsilon }_{1}} \\
& {{\varepsilon }_{2}}<{{\varepsilon }_{1}} \\
& \sin {{\gamma }_{G}}=\sqrt{\frac{{{\varepsilon }_{2}}}{{{\varepsilon }_{1}}}} \\
& \sin {{\gamma }_{G}}=\sqrt{\frac{{{\varepsilon }_{2}}}{{{\varepsilon }_{1}}}} \\
\end{align}</math>
\end{align}</math>


Totalreflexion unter diesem Winkel oder flacher !
Totalreflexion unter diesem Winkel oder flacher!


Grenzwinkel der Totalreflexion ->
Grenzwinkel der Totalreflexion
<math>\gamma \acute{\ }\acute{\ }=\frac{\pi }{2}</math>
:<math>\gamma \acute{\ }\acute{\ }=\frac{\pi }{2}</math>


<math>\begin{align}
:<math>\begin{align}
& {{R}_{\bot }}={{R}_{||}}=1 \\
& {{R}_{\bot }}={{R}_{||}}=1 \\
& {{T}_{\bot }}={{T}_{||}}=0 \\
& {{T}_{\bot }}={{T}_{||}}=0 \\
\end{align}</math>
\end{align}</math>


<math>\begin{align}
:<math>\begin{align}
& {{\varepsilon }_{2}}<{{\varepsilon }_{1}} \\
& {{\varepsilon }_{2}}<{{\varepsilon }_{1}} \\
& \gamma >{{\gamma }_{G}}\Rightarrow  \\
& \gamma >{{\gamma }_{G}}\Rightarrow  \\
\end{align}</math>
\end{align}</math>


<math>k\acute{\ }\acute{\ }</math>
:<math>k\acute{\ }\acute{\ }</math>
wird imaginär -> es dringt kein reeller Strahl mehr ins Medium ein !
wird imaginär es dringt kein reeller Strahl mehr ins Medium ein!

Latest revision as of 00:12, 13 September 2010


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=5|Abschnitt=6}} Kategorie:Elektrodynamik __SHOWFACTBOX__


Wir haben bereits gesehen, wie man aus den Stetigkeitsbedingungen mit Hilfe der integralen Maxwellgleichungen die Brechungsrelationen für die Feldvektoren herleiten kann. Nun soll dies für Lichtwellen wiederholt / vertieft werden:


Sogenannte Wellenausbreitung in geschichteten Medien Transparent →

εiR
ωc1=|k¯|=|k¯´|=ω´c1|k¯´´|=ω´´c2ci=cni=cεii=1,2E¯(r¯,t)=E¯0ei(k¯r¯ωt)

Einfallende Welle:

E¯(r¯,t)=E¯0ei(k¯r¯ωt)

Reflektierte Welle:

E¯´(r¯,t)=E¯0´ei(k¯´r¯ω´t)

Transmittierte Welle:

E¯´´(r¯,t)=E¯0´´ei(k¯´´r¯ω´´t)

Grenzbedingungen für

E¯(r¯,t).
Annahme: linear polarisiert:
E1+E1´|x3=0=E1´´|x3=0

→ Stetigkeit der Tangenzialkomponenten Diese Bedingungen werden nur an die Amplituden gestellt. Für die Phasen gibt es keine Bedingungen, besser gesagt:

Betrachte Situation für r=0

E¯01eiωt+E¯01´eiω´t=E¯01´´eiω´´tω=ω´=ω´´E¯01+E¯01´=E¯01´´

Das Snelliussche Brechungsgesetz können wir uns nicht als Amplitudenverhältnis anschauen, weil wir sonst wieder nur die Brechung der elektrischen Feldvektoren gewinnen. Aber: Wenn man ein Verhältnis der Beträge der k- Vektoren (Ausbreitungsrichtung des Energiestroms) betrachtet, so ergibt sich das richtige Ausbreitungsgesetz:

Betrachte für t=0

E01eik1x1+E01´eik´1x1=E01´´eik1´´x1

Also:

k1=k1´=k1´´

Aber: (Siehe Skizze)! Dies gilt ja genau für die Anteile entlang x^1, also: muss man den Winkel dazunehmen und man gewinnt:

|k¯|sinγ=|k¯´|sinγ´=|k¯´´|sinγ´´|k¯|=ωc1|k¯´|=ωc1|k¯´´|=ωc2

Somit gewinnen wir Reflexions und Snelliussches Brechungsgesetz:

sinγ=sinγ´sinγ´´sinγ=c2c1=n1n2

Reflexions- und Brechungsgesetz

Bestimmung der Amplituden:

  1. Polarisation von E in der Einfallsebene

Stetigkeitsbedingungen: Normalkomponenten sind keine vorhanden → Nur Tangentialkomponenten:

E01=E01´=E01´´=0E03=E03´=E03´´=0

Für die Tangentialkomp.:

E02+E02´=E02´´

Mit

B¯0=cωk¯×E¯0=cωE02(k30k1)

Somit folgt dann für die Tangentialkomponente von B:

B01+B01´=B01´´k3E02+k3´E´02=k3´´E02´´

mit dem Reflexionsgesetz.

k3=k3´
k3(E02E´02)=k3´´(E02+E02´)E´02E02=k3k3´´k3+k3´´E´´02E02=2k3k3+k3´´

Man muss nun nur

k3´´

über den Brechungswinkel

γ´´

ausdrücken und man gewinnt die Fresnelschen Formeln:

k3´´=|k¯´´|cosγ´´=|k¯´|n2n1cosγ´´n2n1=sinγsinγ´´k3´´=|k¯´´|cosγ´´=|k¯´|sinγsinγ´´cosγ´´k3=|k¯|cosγ

Also können wir dies in die gefundenen Formeln für die Amplitudenverhältnisse einsetzen und erhalten die Brechungsformeln (Fresnelsche Formeln) nur noch in Abhängigkeit von den Winkeln:

Also:

E´02E02=cosγsinγ´´sinγcosγ´´cosγsinγ´´+sinγcosγ´´=sin(γ´´γ)sin(γ´´+γ)E´´02E02=2k3k3+k3´´=2sin(γ´´)cosγsin(γ´´+γ)

Intensitätsverhältnisse:

betrachte: Zeitmittel des Poynting- Vektors:

S¯=1T0Tdt(E¯×H¯)

Reflexionskoeffizient: (bei senkrechter Polarisation)

R=|E´02E02|2=sin2(γ´´γ)sin2(γ´´+γ)

Transmissionskoeffizient (bei senkrechter Polarisation)

T=|E´´02E02|2=4sin2(γ´´)cos2γsin2(γ´´+γ)=1R
  1. Polarisation von
  2. E¯||
  3. Einfallsebene:

Dadurch:

B¯

Einfallsebene

  • Analoge Argumentation:
B01=B01´=B01´´=0B03=B03´=B03´´=0B02+B02´=B02´´

usw... ebenfalls Bildung der Verhältnisse in Abhängigkeit von k → wie beim Vorgehen in a) weiter rechnen. k durch Zwischenwinkel ausdrücken: Zur Übung berechnen, es ergibt sich:

E´||E||=tan(γ´´γ)tan(γ´´+γ)E´´||E||=2sin(γ´´)cosγsin(γ´´+γ)cos(γ´´γ)

Ebenso:

R||=|E´||E|||2=tan2(γ´´γ)tan2(γ´´+γ)=1T||

Bemerkung Bei Reflexion und Brechung wird im Allgemeinen die Polarisationsrichtung gedreht. Speziell für den Fall

γ´´+γ=π2>tan(γ´´+γ)R||=0

In diesem Fall kommt es nicht zu Teilpolarisation sondern: die reflektierte Welle wird vollständig polarisiert (senkrecht zur Einfallsebene)

Totalreflexion Sei

ε2<ε1sinγG=ε2ε1

Totalreflexion unter diesem Winkel oder flacher!

Grenzwinkel der Totalreflexion →

γ´´=π2
R=R||=1T=T||=0
ε2<ε1γ>γG
k´´

wird imaginär → es dringt kein reeller Strahl mehr ins Medium ein!