D'Alembertsches Prinzip der virtuellen Arbeit: Difference between revisions

From testwiki
Jump to navigation Jump to search
Die Seite wurde neu angelegt: „{{Scripthinweis|Mechanik|1|3}} Gegeben sei ein System von N Massepunkten mit beliebigen ( holonomen oder nicht holonomen) Zwangsbed. Schreiben wir die Bewegung…“
 
*>SchuBot
m Interpunktion, replaced: , → ,, ( → ( (2)
 
(6 intermediate revisions by 2 users not shown)
Line 1: Line 1:
{{Scripthinweis|Mechanik|1|3}}
<noinclude>{{Scripthinweis|Mechanik|1|3}}</noinclude>




Gegeben sei ein System von N Massepunkten mit beliebigen ( holonomen oder nicht holonomen) Zwangsbed.
Gegeben sei ein System von N Massepunkten mit beliebigen (holonomen oder nicht holonomen) Zwangsbed.


Schreiben wir die Bewegungsgleichungen mit den Zwangskräften Zi als:
Schreiben wir die Bewegungsgleichungen mit den Zwangskräften <math>Z_i</math> als:




<math>\begin{align}
:<math>\begin{align}
   & {{m}_{i}}{{{\ddot{\vec{r}}}}_{i}}(t)-{{{\vec{X}}}_{i}}={{{\vec{Z}}}_{i}}\quad i=1...N \\
   & {{m}_{i}}{{{\ddot{\vec{r}}}}_{i}}(t)-{{{\vec{X}}}_{i}}={{{\vec{Z}}}_{i}}\quad i=1...N \\
  & \to \sum\limits_{i}{\left( {{m}_{i}}{{{\ddot{\vec{r}}}}_{i}}(t)-{{{\vec{X}}}_{i}} \right)\delta {{{\vec{r}}}_{i}}=}\sum\limits_{i}{{{{\vec{Z}}}_{i}}\delta {{{\vec{r}}}_{i}}} \\
  & \to \sum\limits_{i}{\left( {{m}_{i}}{{{\ddot{\vec{r}}}}_{i}}(t)-{{{\vec{X}}}_{i}} \right)\delta {{{\vec{r}}}_{i}}=}\sum\limits_{i}{{{{\vec{Z}}}_{i}}\delta {{{\vec{r}}}_{i}}} \\
\end{align}</math>
\end{align}</math>


{{Def|;Dabei versteht man
{{Def|Dabei versteht man
:<math>\sum\limits_{i}{{{{\vec{X}}}_{i}}\delta {{{\vec{r}}}_{i}}}</math> als virtuelle Arbeit der eingeprägten Kräfte und
:<math>\sum\limits_{i}{{{{\vec{X}}}_{i}}\delta {{{\vec{r}}}_{i}}}</math> als virtuelle Arbeit der eingeprägten Kräfte und
:<math>\sum\limits_{i}{{{{\vec{Z}}}_{i}}\delta {{{\vec{r}}}_{i}}}</math> als virtuelle Arbeit der Zwangskräfte.|Virtuelle Arbeit}}
:<math>\sum\limits_{i}{{{{\vec{Z}}}_{i}}\delta {{{\vec{r}}}_{i}}}</math> als virtuelle Arbeit der Zwangskräfte.|Virtuelle Arbeit}}


{{Beispiel|<u>'''Beispiel: Bewegung auf einer Fläche'''</u>
{{Beispiel|'''Beispiel: Bewegung auf einer Fläche'''




<math>f({{\vec{r}}_{i}},t)=0</math>
:<math>f({{\vec{r}}_{i}},t)=0</math>




Line 25: Line 25:




<math>\vec{a}\cdot (\vec{r}-{{\vec{r}}_{o}}(t))=0</math>
:<math>\vec{a}\cdot (\vec{r}-{{\vec{r}}_{o}}(t))=0</math>




Line 31: Line 31:




<math>\begin{align}
:<math>\begin{align}
   & {{{\vec{Z}}}_{i}}={{\lambda }_{i}}({{{\vec{r}}}_{1}},{{{\vec{r}}}_{2}},...,{{{\vec{r}}}_{N}}){{\nabla }_{ri}}f \\
   & {{{\vec{Z}}}_{i}}={{\lambda }_{i}}({{{\vec{r}}}_{1}},{{{\vec{r}}}_{2}},...,{{{\vec{r}}}_{N}}){{\nabla }_{ri}}f \\
  & {{\nabla }_{ri}}f\quad z.B.\vec{a}\ f\ddot{u}r\ Ebene \\
  & {{\nabla }_{ri}}f\quad z.B.\vec{a}\ f\ddot{u}r\ Ebene \\
Line 40: Line 40:




<math>{{\vec{Z}}_{i}}\delta {{\vec{r}}_{i}}=0={{\lambda }_{i}}({{\vec{r}}_{1}},{{\vec{r}}_{2}},...,{{\vec{r}}_{N}}){{\nabla }_{ri}}f\delta {{\vec{r}}_{i}}={{\lambda }_{i}}\delta f</math>
:<math>{{\vec{Z}}_{i}}\delta {{\vec{r}}_{i}}=0={{\lambda }_{i}}({{\vec{r}}_{1}},{{\vec{r}}_{2}},...,{{\vec{r}}_{N}}){{\nabla }_{ri}}f\delta {{\vec{r}}_{i}}={{\lambda }_{i}}\delta f</math>




Line 46: Line 46:




<math>{{\nabla }_{ri}}f\delta {{\vec{r}}_{i}}</math>
:<math>{{\nabla }_{ri}}f\delta {{\vec{r}}_{i}}</math>
ist als Variation der Zwangsbedingung zu verstehen:
ist als Variation der Zwangsbedingung zu verstehen:




<math>{{\nabla }_{ri}}f</math>
:<math>{{\nabla }_{ri}}f</math>
ist ein Differenzial senkrecht auf die Fläche
ist ein Differenzial senkrecht auf die Fläche




<math>f\delta {{\vec{r}}_{i}}</math>
:<math>f\delta {{\vec{r}}_{i}}</math>
ein Differenzial parallel zur Fläche
ein Differenzial parallel zur Fläche


Line 60: Line 60:




<math>\sum\limits_{i}{{{{\vec{Z}}}_{i}}\delta {{{\vec{r}}}_{i}}}=0</math>
:<math>\sum\limits_{i}{{{{\vec{Z}}}_{i}}\delta {{{\vec{r}}}_{i}}}=0</math>




Line 66: Line 66:




<math>\sum\limits_{i}{{{{\vec{Z}}}_{i}}d{{{\vec{r}}}_{i}}}\ne 0</math>
:<math>\sum\limits_{i}{{{{\vec{Z}}}_{i}}d{{{\vec{r}}}_{i}}}\ne 0</math>
}}
}}
{{Beispiel|
{{Beispiel|
Line 72: Line 72:




<math>{{f}_{\lambda }}=\left| {{{\vec{r}}}_{i}}-{{{\vec{r}}}_{j}} \right|-{{l}_{ij}}:={{r}_{ij}}-{{l}_{ij}}=0</math>
:<math>{{f}_{\lambda }}=\left| {{{\vec{r}}}_{i}}-{{{\vec{r}}}_{j}} \right|-{{l}_{ij}}:={{r}_{ij}}-{{l}_{ij}}=0</math>




Annahme: Die Zwangskräfte wirken in Richtung
Annahme: Die Zwangskräfte wirken in Richtung
<math>{{\vec{r}}_{i}}-{{\vec{r}}_{j}}</math>
:<math>{{\vec{r}}_{i}}-{{\vec{r}}_{j}}</math>






<math>{{\vec{Z}}_{ij}}={{\lambda }_{ij}}\frac{{{{\vec{r}}}_{i}}-{{{\vec{r}}}_{j}}}{{{r}_{ij}}}</math>
:<math>{{\vec{Z}}_{ij}}={{\lambda }_{ij}}\frac{{{{\vec{r}}}_{i}}-{{{\vec{r}}}_{j}}}{{{r}_{ij}}}</math>




Line 87: Line 87:
Bestimme die Richtung der Zwangskraft und multipliziere einen beliebigen skalaren Faktor mit dieser Richtung.
Bestimme die Richtung der Zwangskraft und multipliziere einen beliebigen skalaren Faktor mit dieser Richtung.


Falls die Richtungen für verschiedene Zwangskräfte verschieden sind, so muss man diese indizieren ( mit einem Index kenntlich machen). Die Zwangskräfte erhalten dann ebenso indizierte skalare Faktoren.
Falls die Richtungen für verschiedene Zwangskräfte verschieden sind, so muss man diese indizieren (mit einem Index kenntlich machen). Die Zwangskräfte erhalten dann ebenso indizierte skalare Faktoren.


Mit Hilfe des 3. Newtonschen Axioms können wir weiter einschränken:
Mit Hilfe des 3. Newtonschen Axioms können wir weiter einschränken:




<math>{{\vec{Z}}_{ij}}=-{{\vec{Z}}_{ji}}\Rightarrow {{\lambda }_{i{{j}_{{}}}}}={{\lambda }_{ji}}</math>
:<math>{{\vec{Z}}_{ij}}=-{{\vec{Z}}_{ji}}\Rightarrow {{\lambda }_{i{{j}_{{}}}}}={{\lambda }_{ji}}</math>




Line 98: Line 98:




<math>{{\vec{Z}}_{i}}=\sum\limits_{j\ne i}{{{Z}_{ij}}}=\sum\limits_{j}{{{\lambda }_{ij}}\frac{{{{\vec{r}}}_{i}}-{{{\vec{r}}}_{j}}}{{{r}_{ij}}}}</math>
:<math>{{\vec{Z}}_{i}}=\sum\limits_{j\ne i}{{{Z}_{ij}}}=\sum\limits_{j}{{{\lambda }_{ij}}\frac{{{{\vec{r}}}_{i}}-{{{\vec{r}}}_{j}}}{{{r}_{ij}}}}</math>






<math>{{\vec{Z}}_{i}}\delta {{\vec{r}}_{i}}\ne 0</math>
:<math>{{\vec{Z}}_{i}}\delta {{\vec{r}}_{i}}\ne 0</math>
im Allgemeinen. Es verschwindet also nicht die virtuelle Arbeit für jede Masse einzeln.
im Allgemeinen. Es verschwindet also nicht die virtuelle Arbeit für jede Masse einzeln.


Line 108: Line 108:




<math>\sum\limits_{i}{{{{\vec{Z}}}_{i}}{{\delta }_{{}}}{{{\vec{r}}}_{i}}}=\sum\limits_{i,j}{{{\lambda }_{ij}}\frac{{{{\vec{r}}}_{i}}-{{{\vec{r}}}_{j}}}{{{r}_{ij}}}{{\delta }_{{}}}{{{\vec{r}}}_{i}}}=\frac{1}{2}\sum\limits_{i,j}{{{\lambda }_{ij}}\frac{{{{\vec{r}}}_{i}}-{{{\vec{r}}}_{j}}}{{{r}_{ij}}}}{{\delta }_{{}}}{{({{\vec{r}}_{i}}-{{\vec{r}}_{j}})}_{{}}}=\frac{1}{2}\sum\limits_{i,j}{{{\lambda }_{ij}}}{{\delta }_{{}}}{{r}_{ij}}=0</math>
:<math>\sum\limits_{i}{{{{\vec{Z}}}_{i}}{{\delta }_{{}}}{{{\vec{r}}}_{i}}}=\sum\limits_{i,j}{{{\lambda }_{ij}}\frac{{{{\vec{r}}}_{i}}-{{{\vec{r}}}_{j}}}{{{r}_{ij}}}{{\delta }_{{}}}{{{\vec{r}}}_{i}}}=\frac{1}{2}\sum\limits_{i,j}{{{\lambda }_{ij}}\frac{{{{\vec{r}}}_{i}}-{{{\vec{r}}}_{j}}}{{{r}_{ij}}}}{{\delta }_{{}}}{{({{\vec{r}}_{i}}-{{\vec{r}}_{j}})}_{{}}}=\frac{1}{2}\sum\limits_{i,j}{{{\lambda }_{ij}}}{{\delta }_{{}}}{{r}_{ij}}=0</math>




Line 114: Line 114:




<math>\delta |r|=\delta {{(\vec{r}\cdot \vec{r})}^{\frac{1}{2}}}=\frac{1}{2}{{(\vec{r}\cdot \vec{r})}^{-\frac{1}{2}}}2\vec{r}\delta \vec{r}=\frac{\vec{r}\delta \vec{r}}{r}</math>
:<math>\delta |r|=\delta {{(\vec{r}\cdot \vec{r})}^{\frac{1}{2}}}=\frac{1}{2}{{(\vec{r}\cdot \vec{r})}^{-\frac{1}{2}}}2\vec{r}\delta \vec{r}=\frac{\vec{r}\delta \vec{r}}{r}</math> und <math>{{\delta }_{{}}}{{r}_{ij}}=0</math>
 
 
und
 
 
<math>{{\delta }_{{}}}{{r}_{ij}}=0</math>


}}
}}
==Allgemeine Forderung==
Allgemein kann man fordern:
Allgemein kann man fordern:
 
:<math>\sum\limits_{i}{{{{\vec{Z}}}_{i}}{{\delta }_{{}}}{{{\vec{r}}}_{i}}}=0</math>
 
<math>\sum\limits_{i}{{{{\vec{Z}}}_{i}}{{\delta }_{{}}}{{{\vec{r}}}_{i}}}=0</math>
für alle betrachteten Zwangskräfte.
für alle betrachteten Zwangskräfte.


Das bedeutet: Gleitreibungskräfte längs einer Fläche sind als Zwangskräfte ausgeschlossen.
Das bedeutet: Gleitreibungskräfte längs einer Fläche sind als Zwangskräfte ausgeschlossen.


Somit folgt als d'Alembertsches Prinzip:
{{Def|Somit folgt als '''d'Alembertsches Prinzip''':
 
:<math>\sum\limits_{i}{{{{\vec{Z}}}_{i}}{{\delta }_{{}}}{{{\vec{r}}}_{i}}}=\sum\limits_{i}{\left( {{m}_{i}}{{{\ddot{\vec{r}}}}_{i}}-{{{\vec{X}}}_{i}} \right)}\delta {{\vec{r}}_{i}}=0</math>
 
|d'Alembertsches Prinzip}}
<math>\sum\limits_{i}{{{{\vec{Z}}}_{i}}{{\delta }_{{}}}{{{\vec{r}}}_{i}}}=\sum\limits_{i}{\left( {{m}_{i}}{{{\ddot{\vec{r}}}}_{i}}-{{{\vec{X}}}_{i}} \right)}\delta {{\vec{r}}_{i}}=0</math>
 


Das d´Alembertsche Prinzip gilt gleichermaßen für holonome und anholonome Zwangsbedingungen
Das d´Alembertsche Prinzip gilt gleichermaßen für holonome und anholonome Zwangsbedingungen


<u>'''Beispiel für ein Variationsprinzip:'''</u>
Beispiel für ein {{FB|Variationsprinzip}}:


'''Differentialprinzip: ( für infinitesimal kleine Variationen):'''
{{FB|Differentialprinzip}}: (für infinitesimal kleine Variationen):


Der wirklich angenommene Zustand eines Systems ist in Extremalzustand in dem Sinn, dass die gesamte virtuelle Arbeit Null ist. Dieser Zustand ist stabil gegen kleine Verrückungen der Bahn
Der wirklich angenommene Zustand eines Systems ist in Extremalzustand in dem Sinn, dass die gesamte virtuelle Arbeit Null ist. Dieser Zustand ist stabil gegen kleine Verrückungen der Bahn
<math>\left\{ \delta {{{\vec{r}}}_{i}} \right\}</math>
:<math>\left\{ \delta {{{\vec{r}}}_{i}} \right\}</math>.
.


====Variationsprinzip mit Nebenbedingungen====
==Variationsprinzip mit Nebenbedingungen==


Wir numerieren nun die Vektorkoordinaten um:
Wir numerieren nun die Vektorkoordinaten um:
 
:<math>\begin{align}
 
<math>\begin{align}
   & \vec{r}\to {{r}_{j}}(j=1...3) \\
   & \vec{r}\to {{r}_{j}}(j=1...3) \\
  & \vec{X}\to {{X}_{j}} \\
  & \vec{X}\to {{X}_{j}} \\
Line 160: Line 148:


Aus dem d´Alembertschen Prinzip gewinnen wir:
Aus dem d´Alembertschen Prinzip gewinnen wir:
 
:<math>\sum\limits_{i=1}^{3N}{{{Z}_{i}}{{\delta }_{{}}}{{r}_{i}}}=\sum\limits_{i=1}^{3N}{\left( {{m}_{i}}{{{\ddot{r}}}_{i}}-{{X}_{i}} \right)\delta {{r}_{i}}=0}</math>
 
<math>\sum\limits_{i=1}^{3N}{{{Z}_{i}}{{\delta }_{{}}}{{r}_{i}}}=\sum\limits_{i=1}^{3N}{\left( {{m}_{i}}{{{\ddot{r}}}_{i}}-{{X}_{i}} \right)\delta {{r}_{i}}=0}</math>




Nebenbedingung:
Nebenbedingung:
:<math>\sum\limits_{i=1}^{3N}{{{b}_{i}}^{n}\delta {{r}_{i}}=0\quad n=1,...,\nu }</math>




<math>\sum\limits_{i=1}^{3N}{{{b}_{i}}^{n}\delta {{r}_{i}}=0\quad n=1,...,\nu }</math>
:<math>\nu</math> charakterisiert auch hier die Zahl der Nebenbedingungen, der Index n steht für die n-te Nebenbedingung
 
 
charakterisiert auch hier die Zahl der Nebenbedingungen, der Index n steht für die n-te Nebenbedingung
 
Dies ist lösbar mit der Methode der Lagrange-Multiplikatoren.
 
Denn: Wenn die Vektorkomponenten
<math>{{r}_{i}}</math>
frei variierbar wären, also
<math>\delta {{r}_{i}}</math>
beliebig, so müsste gelten:
 
 
<math>{{m}_{i}}{{\ddot{r}}_{i}}-{{X}_{i}}=0</math>
 
 
Also wäre es sinnvoll, das lineare Gleichungssystem so umzuschreiben, dass ein Satz von Faktoren frei variierbar ist:
 
Zuerst addieren wir die Nebenbedingungen mit noch beliebigen Lagrangemultiplikatoren
<math>{{\lambda }_{n}}</math>
:
 
Wir erhalten:
 
 
<math>\sum\limits_{j=1}^{3N}{\left( {{m}_{j}}{{{\ddot{r}}}_{j}}-{{X}_{j}}-\sum\limits_{n=1}^{\nu }{{{\lambda }_{n}}{{b}_{j}}^{n}} \right)\delta {{r}_{j}}=0}</math>
 
 
Nun sind
<math>\delta {{r}_{1}},\delta {{r}_{2}},...,\delta {{r}_{\nu }}</math>
aus den Nebenbedingungen zu eliminieren.
 
Die verbleibenden
<math>\delta {{r}_{\nu +1}},...,\delta {{r}_{3N}}</math>
sind nun frei variierbar.
 
Nun kann das Summenzeichen weggelassen werden, da die verbleibenden Vektorkomponenten frei variiert werden können und dementsprechend jeder Summand für sich Null sein muss:
 
Es lassen sich
<math>{{\lambda }_{1,}}...,{{\lambda }_{\nu }}</math>
derart bestimmen, dass
 
 
<math>{{m}_{j}}{{\ddot{r}}_{j}}-{{X}_{j}}-\sum\limits_{n=1}^{\nu }{{{\lambda }_{n}}{{b}_{j}}^{n}}=0\quad j=1,...,\nu </math>
 
 
Das heißt, wir suchen die
<math>{{\lambda }_{1,}}...,{{\lambda }_{\nu }}</math>
aus diesem gegebenen linearen Gleichungssystem für die
<math>{{\lambda }_{n}}(t)</math>
als Funktion der
<math>{{\ddot{r}}_{j}}(t)</math>
. Im stationären Fall ist dies direkt auflösbar.
 
 
<math>\sum\limits_{j=\nu +1}^{3N}{\left( {{m}_{j}}{{{\ddot{r}}}_{j}}-{{X}_{j}}-\sum\limits_{n=1}^{\nu }{{{\lambda }_{n}}{{b}_{j}}^{n}} \right)\delta {{r}_{j}}=0}</math>


Dies ist lösbar mit der {{FB|Methode der Lagrange-Multiplikatoren}}.


Da hier jedoch die
Denn: Wenn die Vektorkomponenten <math>{{r}_{i}}</math> frei variierbar wären, also <math>\delta {{r}_{i}}</math> beliebig, so müsste gelten:
<math>\delta {{r}_{j}}</math>
:<math>{{m}_{i}}{{\ddot{r}}_{i}}-{{X}_{i}}=0</math>
frei variierbar sind, gilt:




<math>{{m}_{j}}{{\ddot{r}}_{j}}-{{X}_{j}}-\sum\limits_{n=1}^{\nu }{{{\lambda }_{n}}{{b}_{j}}^{n}}=0</math>
Also wäre es sinnvoll, das lineare Gleichungssystem so umzuschreiben, dass ein '''Satz von Faktoren frei variierbar''' ist:


* Zuerst addieren wir die Nebenbedingungen mit noch beliebigen {{FB|Lagrangemultiplikatoren}} <math>{{\lambda }_{n}}</math> Wir erhalten:
**<math>\sum\limits_{j=1}^{3N}{\left( {{m}_{j}}{{{\ddot{r}}}_{j}}-{{X}_{j}}-\sum\limits_{n=1}^{\nu }{{{\lambda }_{n}}{{b}_{j}}^{n}} \right)\delta {{r}_{j}}=0}</math>
*Nun sind <math>\delta {{r}_{1}},\delta {{r}_{2}},...,\delta {{r}_{\nu }}</math> aus den '''Nebenbedingungen''' zu eliminieren. Die verbleibenden <math>\delta {{r}_{\nu +1}},...,\delta {{r}_{3N}}</math> sind nun frei variierbar.
*Nun kann das Summenzeichen weggelassen werden, da die verbleibenden Vektorkomponenten frei variiert werden können und dementsprechend jeder Summand für sich Null sein muss:
**Es lassen sich <math>{{\lambda }_{1,}}...,{{\lambda }_{\nu }}</math> derart bestimmen, dass
**<math>{{m}_{j}}{{\ddot{r}}_{j}}-{{X}_{j}}-\sum\limits_{n=1}^{\nu }{{{\lambda }_{n}}{{b}_{j}}^{n}}=0\quad j=1,...,\nu </math>
**Das heißt, wir suchen die <math>{{\lambda }_{1,}}...,{{\lambda }_{\nu }}</math> aus diesem gegebenen linearen Gleichungssystem für die <math>{{\lambda }_{n}}(t)</math> als Funktion der <math>{{\ddot{r}}_{j}}(t)</math>; Im stationären Fall ist dies direkt auflösbar.
** <math>\sum\limits_{j=\nu +1}^{3N}{\left( {{m}_{j}}{{{\ddot{r}}}_{j}}-{{X}_{j}}-\sum\limits_{n=1}^{\nu }{{{\lambda }_{n}}{{b}_{j}}^{n}} \right)\delta {{r}_{j}}=0}</math>
**Da hier jedoch die <math>\delta {{r}_{j}}</math> frei variierbar sind, gilt:
{{Def|<math>{{m}_{j}}{{\ddot{r}}_{j}}-{{X}_{j}}-\sum\limits_{n=1}^{\nu }{{{\lambda }_{n}}{{b}_{j}}^{n}}=0</math>'''Lagrange- Gleichung der 1. Art'''|Lagrange- Gleichung der 1. Art}}
:<math>\sum\limits_{n=1}^{\nu }{{{\lambda }_{n}}{{b}_{j}}^{n}}</math> kann als Zwangskraft interpretiert werden und taucht in der Statik als Lagrange- Parameter auf.


Die Lagrange- Gleichung der 1. Art
{{Beispiel|Beispiel Atwoodsche Fallmaschine
 
[[Datei:Atwoods machine functionally.svg|miniatur|Atwoods Fallmaschine]]
 
Aus der Schule bekannt ist die Kraft, die an m1 angreift, nämlich -m1g und die Kraft, die an m2 angreift, nämlich -m2g.
<math>\sum\limits_{n=1}^{\nu }{{{\lambda }_{n}}{{b}_{j}}^{n}}</math>
kann als Zwangskraft interpretiert werden und taucht in der Statik als Lagrange- Parameter auf.
 
====Beispiel Atwoodsche Fallmaschine====
 
[[Datei:Atwoods_machine_functionally.svg|miniatur|Atwoods Fallmaschine]]
 
Aus der Schule bekannt ist die Kraft, die an m1 angreift, nämlich -m1g und die Kraft , die an m2 angreift, nämlich -m2g.
 
Beginnen wir mit dem d´Alembertschen Prinzip:
Beginnen wir mit dem d´Alembertschen Prinzip:


 
:<math>\sum\limits_{i}{{{{\vec{Z}}}_{i}}{{\delta }_{{}}}{{{\vec{r}}}_{i}}}=\sum\limits_{i}{\left( {{m}_{i}}{{{\ddot{\vec{r}}}}_{i}}-{{{\vec{X}}}_{i}} \right)}\delta {{\vec{r}}_{i}}=0</math>
<math>\sum\limits_{i}{{{{\vec{Z}}}_{i}}{{\delta }_{{}}}{{{\vec{r}}}_{i}}}=\sum\limits_{i}{\left( {{m}_{i}}{{{\ddot{\vec{r}}}}_{i}}-{{{\vec{X}}}_{i}} \right)}\delta {{\vec{r}}_{i}}=0</math>
 


so folgt:
so folgt:
 
:<math>({{m}_{1}}{{\ddot{h}}_{1}}-{{X}_{1}})\delta {{h}_{1}}+({{m}_{2}}{{\ddot{h}}_{2}}-{{X}_{2}})\delta {{h}_{2}}=0</math>
 
<math>({{m}_{1}}{{\ddot{h}}_{1}}-{{X}_{1}})\delta {{h}_{1}}+({{m}_{2}}{{\ddot{h}}_{2}}-{{X}_{2}})\delta {{h}_{2}}=0</math>
 
 
Da der Aufbau nur ein Rädchen besitzt gilt ganz einfach:
Da der Aufbau nur ein Rädchen besitzt gilt ganz einfach:
 
:<math>\begin{align}
 
<math>\begin{align}
   & {{h}_{1}}+{{h}_{2}}=const. \\
   & {{h}_{1}}+{{h}_{2}}=const. \\
  & \delta {{h}_{1}}=-\delta {{h}_{2}} \\
  & \delta {{h}_{1}}=-\delta {{h}_{2}} \\
Line 270: Line 195:


Also folgt:
Also folgt:
:<math>({{m}_{1}}{{\ddot{h}}_{1}}+{{m}_{1}}g)\delta {{h}_{1}}-(-{{m}_{2}}{{\ddot{h}}_{1}}+{{m}_{2}}g)\delta {{h}_{1}}=0</math>


:<math>{{m}_{1}}{{\ddot{h}}_{1}}+{{m}_{1}}g+{{m}_{2}}{{\ddot{h}}_{1}}-{{m}_{2}}g=0</math>


<math>({{m}_{1}}{{\ddot{h}}_{1}}+{{m}_{1}}g)\delta {{h}_{1}}-(-{{m}_{2}}{{\ddot{h}}_{1}}+{{m}_{2}}g)\delta {{h}_{1}}=0</math>
:<math>{{\ddot{h}}_{1}}=\frac{({{m}_{2}}-{{m}_{1}})}{{{m}_{1}}+{{m}_{2}}}g</math>
 
 
 
<math>{{m}_{1}}{{\ddot{h}}_{1}}+{{m}_{1}}g+{{m}_{2}}{{\ddot{h}}_{1}}-{{m}_{2}}g=0</math>
 
 
 
<math>{{\ddot{h}}_{1}}=\frac{({{m}_{2}}-{{m}_{1}})}{{{m}_{1}}+{{m}_{2}}}g</math>
 


Also: Am bedeutendsten ist das d´Alembertsche Prinzip, welches sagt, dass die Summe über alle virtuellen Arbeiten der Zwangskräfte Null ist:
Also: Am bedeutendsten ist das d´Alembertsche Prinzip, welches sagt, dass die Summe über alle virtuellen Arbeiten der Zwangskräfte Null ist:


 
:<math>\sum\limits_{i}{{{{\vec{Z}}}_{i}}{{\delta }_{{}}}{{{\vec{r}}}_{i}}}=\sum\limits_{i}{\left( {{m}_{i}}{{{\ddot{\vec{r}}}}_{i}}-{{{\vec{X}}}_{i}} \right)}\delta {{\vec{r}}_{i}}=0</math>}}
<math>\sum\limits_{i}{{{{\vec{Z}}}_{i}}{{\delta }_{{}}}{{{\vec{r}}}_{i}}}=\sum\limits_{i}{\left( {{m}_{i}}{{{\ddot{\vec{r}}}}_{i}}-{{{\vec{X}}}_{i}} \right)}\delta {{\vec{r}}_{i}}=0</math>

Latest revision as of 00:25, 13 September 2010


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=1|Abschnitt=3}} Kategorie:Mechanik __SHOWFACTBOX__



Gegeben sei ein System von N Massepunkten mit beliebigen (holonomen oder nicht holonomen) Zwangsbed.

Schreiben wir die Bewegungsgleichungen mit den Zwangskräften Zi als:


mir¨i(t)Xi=Zii=1...Ni(mir¨i(t)Xi)δri=iZiδri


Dabei versteht man
iXiδri als virtuelle Arbeit der eingeprägten Kräfte und
iZiδri als virtuelle Arbeit der Zwangskräfte.

{{#set:Definition=Virtuelle Arbeit|Index=Virtuelle Arbeit}}


Beispiel: Bewegung auf einer Fläche


f(ri,t)=0


das ist auf der Ebene gerade durch die Normale auszudrücken:


a(rro(t))=0


Annahme: Alle Zwangskräfte stehen senkrecht auf die Fläche:


Zi=λi(r1,r2,...,rN)rifrifz.B.afu¨rEbene


Die Virtuelle Arbeit der Zwangskräfte verschwindet nun:


Ziδri=0=λi(r1,r2,...,rN)rifδri=λiδf


Begründung:


rifδri

ist als Variation der Zwangsbedingung zu verstehen:


rif

ist ein Differenzial senkrecht auf die Fläche


fδri

ein Differenzial parallel zur Fläche

Also folgt:


iZiδri=0


Die reale Arbeit der Zwangskräfte verschwindet dagegen im Allgemeinen nicht:


iZidri0


Beispiel: Starrer Körper


fλ=|rirj|lij:=rijlij=0


Annahme: Die Zwangskräfte wirken in Richtung

rirj


Zij=λijrirjrij


Das Vorgehen läßt sich also folgendermaßen schematisieren:

Bestimme die Richtung der Zwangskraft und multipliziere einen beliebigen skalaren Faktor mit dieser Richtung.

Falls die Richtungen für verschiedene Zwangskräfte verschieden sind, so muss man diese indizieren (mit einem Index kenntlich machen). Die Zwangskräfte erhalten dann ebenso indizierte skalare Faktoren.

Mit Hilfe des 3. Newtonschen Axioms können wir weiter einschränken:


Zij=Zjiλij=λji


Auf das Teilchen i wirkt also insgesamt die Zwangskraft:


Zi=jiZij=jλijrirjrij


Ziδri0

im Allgemeinen. Es verschwindet also nicht die virtuelle Arbeit für jede Masse einzeln.

Jedoch gilt:


iZiδri=i,jλijrirjrijδri=12i,jλijrirjrijδ(rirj)=12i,jλijδrij=0


Beweis:


δ|r|=δ(rr)12=12(rr)122rδr=rδrr und δrij=0


Allgemeine Forderung[edit | edit source]

Allgemein kann man fordern:

iZiδri=0

für alle betrachteten Zwangskräfte.

Das bedeutet: Gleitreibungskräfte längs einer Fläche sind als Zwangskräfte ausgeschlossen.


Somit folgt als d'Alembertsches Prinzip:
iZiδri=i(mir¨iXi)δri=0

{{#set:Definition=d'Alembertsches Prinzip|Index=d'Alembertsches Prinzip}}


Das d´Alembertsche Prinzip gilt gleichermaßen für holonome und anholonome Zwangsbedingungen

Beispiel für ein Variationsprinzip{{#set:Fachbegriff=Variationsprinzip|Index=Variationsprinzip}}:

Differentialprinzip{{#set:Fachbegriff=Differentialprinzip|Index=Differentialprinzip}}: (für infinitesimal kleine Variationen):

Der wirklich angenommene Zustand eines Systems ist in Extremalzustand in dem Sinn, dass die gesamte virtuelle Arbeit Null ist. Dieser Zustand ist stabil gegen kleine Verrückungen der Bahn

{δri}.

Variationsprinzip mit Nebenbedingungen[edit | edit source]

Wir numerieren nun die Vektorkoordinaten um:

rrj(j=1...3)XXjabjn


Aus dem d´Alembertschen Prinzip gewinnen wir:

i=13NZiδri=i=13N(mir¨iXi)δri=0


Nebenbedingung:

i=13Nbinδri=0n=1,...,ν


ν charakterisiert auch hier die Zahl der Nebenbedingungen, der Index n steht für die n-te Nebenbedingung

Dies ist lösbar mit der Methode der Lagrange-Multiplikatoren{{#set:Fachbegriff=Methode der Lagrange-Multiplikatoren|Index=Methode der Lagrange-Multiplikatoren}}.

Denn: Wenn die Vektorkomponenten ri frei variierbar wären, also δri beliebig, so müsste gelten:

mir¨iXi=0


Also wäre es sinnvoll, das lineare Gleichungssystem so umzuschreiben, dass ein Satz von Faktoren frei variierbar ist:

mjr¨jXjn=1νλnbjn=0Lagrange- Gleichung der 1. Art

{{#set:Definition=Lagrange- Gleichung der 1. Art|Index=Lagrange- Gleichung der 1. Art}}

n=1νλnbjn kann als Zwangskraft interpretiert werden und taucht in der Statik als Lagrange- Parameter auf.


Beispiel Atwoodsche Fallmaschine

miniatur|Atwoods Fallmaschine Aus der Schule bekannt ist die Kraft, die an m1 angreift, nämlich -m1g und die Kraft, die an m2 angreift, nämlich -m2g. Beginnen wir mit dem d´Alembertschen Prinzip:

iZiδri=i(mir¨iXi)δri=0

so folgt:

(m1h¨1X1)δh1+(m2h¨2X2)δh2=0

Da der Aufbau nur ein Rädchen besitzt gilt ganz einfach:

h1+h2=const.δh1=δh2h¨1=h¨2


Also folgt:

(m1h¨1+m1g)δh1(m2h¨1+m2g)δh1=0
m1h¨1+m1g+m2h¨1m2g=0
h¨1=(m2m1)m1+m2g

Also: Am bedeutendsten ist das d´Alembertsche Prinzip, welches sagt, dass die Summe über alle virtuellen Arbeiten der Zwangskräfte Null ist:

iZiδri=i(mir¨iXi)δri=0