Der Hamiltonsche kanonische Formalismus: Difference between revisions
No edit summary |
No edit summary |
||
(9 intermediate revisions by 8 users not shown) | |||
Line 4: | Line 4: | ||
<math>\begin{align} | :<math>\begin{align} | ||
& L({{q}_{1}},...,{{q}_{f}},{{{\dot{q}}}_{1}},...,{{{\dot{q}}}_{f}},t) \\ | & L({{q}_{1}},...,{{q}_{f}},{{{\dot{q}}}_{1}},...,{{{\dot{q}}}_{f}},t) \\ | ||
& \Rightarrow \frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}-\frac{\partial L}{\partial {{q}_{k}}}=0 \\ | & \Rightarrow \frac{d}{dt}\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}-\frac{\partial L}{\partial {{q}_{k}}}=0 \\ | ||
Line 15: | Line 15: | ||
<math>\frac{\partial L}{\partial {{q}_{k}}}=0\Rightarrow \frac{\partial L}{\partial {{{\dot{q}}}_{k}}}=const</math> | :<math>\frac{\partial L}{\partial {{q}_{k}}}=0\Rightarrow \frac{\partial L}{\partial {{{\dot{q}}}_{k}}}=const</math> | ||
oder auch bei bestimmten Erweiterungen der Theorie ( Quantenmechanik, statistische Mechanik) | oder auch bei bestimmten Erweiterungen der Theorie (Quantenmechanik, statistische Mechanik) | ||
ist es vorteilhaft, statt qk und deren Geschwindigkeiten qk und die zu qk konjugierten Impulse zu benutzen. | ist es vorteilhaft, statt qk und deren Geschwindigkeiten qk und die zu qk konjugierten Impulse zu benutzen. | ||
Line 25: | Line 25: | ||
<math>{{p}_{k}}:=\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}</math> | :<math>{{p}_{k}}:=\frac{\partial L}{\partial {{{\dot{q}}}_{k}}}</math> | ||
Line 31: | Line 31: | ||
<math>\left( {{q}_{k}},{{{\dot{q}}}_{k}},t \right)\to \left( {{q}_{k}},{{p}_{k}},t \right)</math> | :<math>\left( {{q}_{k}},{{{\dot{q}}}_{k}},t \right)\to \left( {{q}_{k}},{{p}_{k}},t \right)</math> | ||
Latest revision as of 11:07, 5 July 2011
Motivation[edit | edit source]
Die Lagrange- Theorie benutzt als dynamische Variablen die verallgemeinerten Koordinaten qk und deren Geschwindigkeiten:
k=1,..,f
Wir erhalten f DGL 2. Ordnung für qk(t) im Lagrangeformalismus
Bei gewissen Problemstellungen, wenn es beispielsweise zyklische Variablen gibt:
oder auch bei bestimmten Erweiterungen der Theorie (Quantenmechanik, statistische Mechanik)
ist es vorteilhaft, statt qk und deren Geschwindigkeiten qk und die zu qk konjugierten Impulse zu benutzen.
Die zu den verallgemeinerten Koordinaten konjugierten Impulse lauten:
Die erforderliche Variablentransformation
leistet die sogenannte Legendre- Transformation.
Im Hamiltonformalismus ergeben sich nun 2f DGL 1. Ordnung für
qk(t) und pk(t)
65px|Kein GFDL | Der Artikel Der Hamiltonsche kanonische Formalismus basiert auf der Vorlesungsmitschrift von Franz- Josef Schmitt des 4.Kapitels (Abschnitt 0) der Mechanikvorlesung von Prof. Dr. E. Schöll, PhD. |
|}}
{{#ask: |format=embedded |Kategorie:MechanikKapitel::4Abschnitt::!0Urheber::Prof. Dr. E. Schöll, PhD |order=ASC |sort=Abschnitt |offset=0 |limit=20 }} {{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=4|Abschnitt=0}} Kategorie:Mechanik __SHOWFACTBOX__