| 
				   | 
				
| (189 intermediate revisions by 55 users not shown) | 
| Line 1: | 
Line 1: | 
 | TEST
  |  | Im PhysikWiki findet man  | 
 | == Rotation in kartesischen Koordinaten ==
  |  | 
 | 
  |  | 
  | 
 | Seien <math>(x,y,z)</math> die [[Kartesisches Koordinatensystem|kartesischen Koordinaten]] des dreidimensionalen euklidischen Raumes und <math>\mathbf e_x\,,</math> <math>\mathbf e_y</math> und <math>\mathbf e_z</math> die normierten, zueinander senkrechten Basisvektoren, die an jedem Punkt in Richtung der zunehmenden Koordinaten zeigen. 
  |  | *[[Spezial:BrowseData/Theoretische_Physik|Artikel zur theoretischen Physik]]  | 
 | 
  |  | 
  | 
 | Die Rotation eines dreidimensionalen, differenzierbaren Vektorfeldes 
  |  | *[[Spezial:BrowseData/Klausuraufgabe|Klausuaraufgaben zur Physik für Inegnieuere]]  | 
 | : <math>\mathbf F(x,y,z)=F_x(x,y,z)\, \mathbf e_x + F_y(x,y,z)\,\mathbf e_y  + F_z(x,y,z)\,\mathbf e_z </math>   |  |    | 
 | ist das dreidimensionale Vektorfeld
  |  | *sowie eine Übersicht über die [[Weihnachtsübung_zur_Allgemeinen_Relativitätstheorie_II|ART]].  | 
 | :<math>\mathbf{\operatorname{rot}}\,
  |  |    | 
 | %Ja so ein Scheiß
  |  | FP-Protokolle sowie Materialien zu den Tutorien Physik für Ingenieure findet man unter  | 
 | \mathbf F(x,y,z) = 
  |  |    | 
 | \left (\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}\right )\mathbf e_x 
  |  | [http://www.physikerwelt.de physikerwelt.de].  | 
 | +
  |  |    | 
 | \left (\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}\right )\mathbf e_y  
  |  | Das PhysikWiki ist ein [http://www.MediaBotz.de MediaBotz] Projekt.  | 
 | +
  |  |    | 
 | \left (\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}\right )\mathbf e_z
  |  | Jetzt neu: [[Kernphysik_Einleitung|Kernphysik]]  | 
 | \,.</math>
  |  | 
 | Als Merkregel kann man <math>\operatorname{rot}\, \mathbf F</math> als [[Determinante (Mathematik)|Determinante]] einer Matrix auffassen, deren erste Spalte die kartesischen Basisvektoren enthält, die zweite die partiellen Ableitungen nach den kartesischen Koordinaten und die dritte die zu differenzierenden Komponentenfunktionen
  |  | 
 | :<math>\operatorname{rot}\,\mathbf F =\operatorname{det}\,
  |  | 
 | \begin{pmatrix}
  |  | 
 | \mathbf e_x & \frac{\partial}{\partial x} & F_x\\
  |  | 
 | \mathbf e_y & \frac{\partial}{\partial y} & F_y\\
  |  | 
 | \mathbf e_z & \frac{\partial}{\partial z} & F_z 
  |  | 
 | \end{pmatrix}\,.
  |  | 
 | </math>
  |  | 
Im PhysikWiki findet man
- sowie eine Übersicht über die ART.
 
FP-Protokolle sowie Materialien zu den Tutorien Physik für Ingenieure findet man unter
physikerwelt.de.
Das PhysikWiki ist ein MediaBotz Projekt.
Jetzt neu: Kernphysik