| 
				   | 
				
| (67 intermediate revisions by the same user not shown) | 
| Line 1: | 
Line 1: | 
 | ==MathTEST==
  |  | Im PhysikWiki findet man  | 
 | Google:
  |  | 
 | <m>\sin^2(x)+\cos(x)^2+e^{i \pi}=0</m>
  |  | 
 | 
  |  | 
  | 
 |  | *[[Spezial:BrowseData/Theoretische_Physik|Artikel zur theoretischen Physik]]  | 
 | 
  |  | 
  | 
 | Mediawiki-Math:
  |  | *[[Spezial:BrowseData/Klausuraufgabe|Klausuaraufgaben zur Physik für Inegnieuere]]  | 
 | <math>\sin(x)^2+\cos(x)^2+e^{i \pi}=0</math>
  |  | 
 | 
  |  | 
  | 
 | <math>\begin{align}
  |  | *sowie eine Übersicht über die [[Weihnachtsübung_zur_Allgemeinen_Relativitätstheorie_II|ART]].  | 
 | & \frac{d}{dt}\frac{\partial L(\bar{r},\bar{v},t)}{\partial {{v}_{k}}}=m{{{\ddot{x}}}_{k}}+q\left( \frac{\partial }{\partial t}{{A}_{k}}(\bar{r},t)+\frac{\partial {{A}_{k}}(\bar{r},t)}{\partial {{x}_{l}}}\frac{\partial {{x}_{l}}}{\partial t} \right)=m{{{\ddot{x}}}_{k}}+q\left( \frac{\partial }{\partial t}+\bar{v}\cdot \nabla  \right){{A}_{k}}(\bar{r},t) \\
  |  | 
 | & \frac{\partial L(\bar{r},\bar{v},t)}{\partial {{x}_{k}}}=q\left[ \frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right)-\frac{\partial }{\partial {{x}_{k}}}\Phi  \right] \\
  |  | 
 | & \Rightarrow 0=\frac{d}{dt}\frac{\partial L(\bar{r},\bar{v},t)}{\partial {{v}_{k}}}-\frac{\partial L(\bar{r},\bar{v},t)}{\partial {{x}_{k}}}=m{{{\ddot{x}}}_{k}}+q\left( \frac{\partial }{\partial t}+\bar{v}\cdot \nabla  \right){{A}_{k}}(\bar{r},t)-q\left[ \frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right)-\frac{\partial }{\partial {{x}_{k}}}\Phi  \right] \\
  |  | 
 | & =m{{{\ddot{x}}}_{k}}+q\frac{\partial }{\partial t}{{A}_{k}}(\bar{r},t)+q\left[ \left( \bar{v}\cdot \nabla  \right){{A}_{k}}(\bar{r},t)-\frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right) \right]+q\frac{\partial }{\partial {{x}_{k}}}\Phi  \\
  |  | 
 | & \left[ \left( \bar{v}\cdot \nabla  \right){{A}_{k}}(\bar{r},t)-\frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right) \right]=-{{\left[ \bar{v}\times \left( \nabla \times \bar{A} \right) \right]}_{k}} \\
  |  | 
 | & \Rightarrow 0=m\ddot{\bar{r}}+q\frac{\partial }{\partial t}A(\bar{r},t)-q\left[ \bar{v}\times \left( \nabla \times \bar{A} \right) \right]+q\nabla \Phi =m\ddot{\bar{r}}+q\left[ \frac{\partial }{\partial t}A(\bar{r},t)+\nabla \Phi -\left[ \bar{v}\times \left( \nabla \times \bar{A} \right) \right] \right] \\
  |  | 
 | \end{align}</math>
  |  | 
 | 
  |  | 
  | 
 | <m>
  |  | FP-Protokolle sowie Materialien zu den Tutorien Physik für Ingenieure findet man unter  | 
 | \begin{align}
  |  | 
 | & \frac{d}{dt}\frac{\partial L(\bar{r},\bar{v},t)}{\partial {{v}_{k}}}=m{{{\ddot{x}}}_{k}}+q\left( \frac{\partial }{\partial t}{{A}_{k}}(\bar{r},t)+\frac{\partial {{A}_{k}}(\bar{r},t)}{\partial {{x}_{l}}}\frac{\partial {{x}_{l}}}{\partial t} \right)=m{{{\ddot{x}}}_{k}}+q\left( \frac{\partial }{\partial t}+\bar{v}\cdot \nabla  \right){{A}_{k}}(\bar{r},t) \\
  |  | 
 | & \frac{\partial L(\bar{r},\bar{v},t)}{\partial {{x}_{k}}}=q\left[ \frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right)-\frac{\partial }{\partial {{x}_{k}}}\Phi  \right] \\
  |  | 
 | & \Rightarrow 0=\frac{d}{dt}\frac{\partial L(\bar{r},\bar{v},t)}{\partial {{v}_{k}}}-\frac{\partial L(\bar{r},\bar{v},t)}{\partial {{x}_{k}}}=m{{{\ddot{x}}}_{k}}+q\left( \frac{\partial }{\partial t}+\bar{v}\cdot \nabla  \right){{A}_{k}}(\bar{r},t)-q\left[ \frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right)-\frac{\partial }{\partial {{x}_{k}}}\Phi  \right] \\
  |  | 
 | & =m{{{\ddot{x}}}_{k}}+q\frac{\partial }{\partial t}{{A}_{k}}(\bar{r},t)+q\left[ \left( \bar{v}\cdot \nabla  \right){{A}_{k}}(\bar{r},t)-\frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right) \right]+q\frac{\partial }{\partial {{x}_{k}}}\Phi  \\
  |  | 
 | & \left[ \left( \bar{v}\cdot \nabla  \right){{A}_{k}}(\bar{r},t)-\frac{\partial }{\partial {{x}_{k}}}\left( \bar{v}\bar{A} \right) \right]=-{{\left[ \bar{v}\times \left( \nabla \times \bar{A} \right) \right]}_{k}} \\
  |  | 
 | & \Rightarrow 0=m\ddot{\bar{r}}+q\frac{\partial }{\partial t}A(\bar{r},t)-q\left[ \bar{v}\times \left( \nabla \times \bar{A} \right) \right]+q\nabla \Phi =m\ddot{\bar{r}}+q\left[ \frac{\partial }{\partial t}A(\bar{r},t)+\nabla \Phi -\left[ \bar{v}\times \left( \nabla \times \bar{A} \right) \right] \right] \\
  |  | 
 | \end{align}</m>
  |  | 
 | 
  |  | 
  | 
 |  | [http://www.physikerwelt.de physikerwelt.de].  | 
 | 
  |  | 
  | 
 |  | Das PhysikWiki ist ein [http://www.MediaBotz.de MediaBotz] Projekt.  | 
 | 
  |  | 
  | 
 | <math>c+c*c^2+c+2c+8c</math>
  |  | Jetzt neu: [[Kernphysik_Einleitung|Kernphysik]]  | 
Im PhysikWiki findet man
- sowie eine Übersicht über die ART.
 
FP-Protokolle sowie Materialien zu den Tutorien Physik für Ingenieure findet man unter
physikerwelt.de.
Das PhysikWiki ist ein MediaBotz Projekt.
Jetzt neu: Kernphysik