Liouville-von-Neumann-Gleichung: Difference between revisions
		
		
		
		Jump to navigation
		Jump to search
		
| No edit summary | *>SchuBot m →Einzelnachweise: Kategorie | ||
| (17 intermediate revisions by 4 users not shown) | |||
| Line 1: | Line 1: | ||
| <math> | <math> | ||
| \dot \rho  =  | \dot \rho  = \mathcal{L} \rho = - \frac{i}{\color{Gray}\hbar }\left[ {H,\rho } \right]</math> | ||
| mit   | mit | ||
| {| class="wikitable"   | {| class="wikitable" | ||
| |-   | |- | ||
| | <math>\rho</math>  || Dichteoperator | | <math>\rho</math>  || Dichteoperator | ||
| |-   | |- | ||
| | H || Hamiltonoperator | | H || Hamiltonoperator | ||
| |-   | |- | ||
| | <math>\left[_,_ \right]</math>|| Kommutator | | <math>\left[\_ \,,\_ \right]</math>|| Kommutator | ||
| |} | |} | ||
| {{Quelle|Schöll, QM 2.5 Teil 1 Seite 77}} | |||
| ==Herleitung== | |||
| [[Schrödingergleichung]] | |||
| :<math>{\mathfrak{i}{\partial }_{t}}\Psi (t) =\hat{H}\Psi (t)</math> | |||
| Dirac Notation | |||
| Ket: | |||
| :<math>\begin{align} | |||
|   & \left| \mathfrak{i}{{\partial }_{t}}\Psi \left( t \right) \right\rangle =\left| \hat{H}\Psi \left( t \right) \right\rangle  \\ | |||
|  & \mathfrak{i}{{\partial }_{t}}\left| \Psi \left( t \right) \right\rangle =\hat{H}\left| \Psi \left( t \right) \right\rangle \Rightarrow {{\partial }_{t}}\left| \Psi \left( t \right) \right\rangle =-\mathfrak{i}\hat{H}\left| \Psi \left( t \right) \right\rangle  \\ | |||
| \end{align}</math> | |||
| Bra: | |||
| :<math>\begin{align} | |||
|   & \left\langle  \mathfrak{i}{{\partial }_{t}}\Psi \left( t \right) \right|=\left\langle  \hat{H}\Psi \left( t \right) \right| \\ | |||
|  & \text{-}\mathfrak{i}{{\partial }_{t}}\left\langle  \Psi \left( t \right) \right|=\left\langle  \Psi \left( t \right) \right|\hat{H},\,\left( \hat{H}={{{\hat{H}}}^{+}} \right)\Rightarrow {{\partial }_{t}}\left\langle  \Psi \left( t \right) \right|=\mathfrak{i}\left\langle  \Psi \left( t \right) \right|\hat{H} \\ | |||
| \end{align}</math> | |||
| [[Dichtematrix]] | |||
| :<math>\rho =\left| \Psi \left( t \right) \right\rangle \left\langle  \Psi \left( t \right) \right|</math> | |||
| einsetzen: | |||
| :<math>\begin{align} | |||
|   & \dot{\rho }={{\partial }_{t}}\left( \left| \Psi \left( t \right) \right\rangle \left\langle  \Psi \left( t \right) \right| \right) \\  | |||
|  & =\left( {{\partial }_{t}}\left| \Psi \left( t \right) \right\rangle  \right)\left\langle  \Psi \left( t \right) \right|+\left| \Psi \left( t \right) \right\rangle \left( {{\partial }_{t}}\left\langle  \Psi \left( t \right) \right| \right) \\  | |||
|  & =-\mathfrak{i}\hat{H}\left| \Psi \left( t \right) \right\rangle \left\langle  \Psi \left( t \right) \right|+\left| \Psi \left( t \right) \right\rangle \left\langle  \Psi \left( t \right) \right|\mathfrak{i}\hat{H} \\  | |||
|  & =-\mathfrak{i}\left( \hat{H}\rho -\rho \hat{H} \right)\equiv -\mathfrak{i}\left[ \hat{H},\rho  \right]=\mathfrak{i}\left[ \rho ,\hat{H} \right]   | |||
| \end{align}</math> | |||
| == Einzelnachweise == | |||
| <references /> | |||
| [http://de.wikipedia.org/wiki/Von-Neumann-Gleichung Wikipedia-Eintrag] | |||
| [[Kategorie:Thermodynamik]] | |||
Latest revision as of 23:13, 16 September 2010
| Dichteoperator | |
| H | Hamiltonoperator | 
| Kommutator | 
Herleitung[edit | edit source]
Dirac Notation
Ket:
Bra:
einsetzen:
Einzelnachweise[edit | edit source]
- ↑ Schöll, QM 2.5 Teil 1 Seite 77,