Paramagnetismus: Difference between revisions

From testwiki
Jump to navigation Jump to search
Die Seite wurde neu angelegt: „<noinclude>{{Scripthinweis|Thermodynamik|5|7}}</noinclude> Paramagnetismus: vorhandene magnetische Momente werden durch ein äußeres Magnetfeld ausgerichtet ! …“
 
*>SchuBot
m Interpunktion, replaced: ! → ! (22), ( → ( (19)
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
<noinclude>{{Scripthinweis|Thermodynamik|5|7}}</noinclude>
<noinclude>{{Scripthinweis|Thermodynamik|5|7}}</noinclude>


Paramagnetismus:  vorhandene magnetische Momente werden durch ein äußeres Magnetfeld ausgerichtet ! Keine WW der Elementarmagnete untereinander
'''Paramagnetismus''':  vorhandene magnetische Momente werden durch ein äußeres Magnetfeld ausgerichtet! Keine WW der Elementarmagnete untereinander


Ferromagnetismus: Korrelation der permanenten Elementarmagnete untereinander ! -> spontane Magnetisierung !
Ferromagnetismus: Korrelation der permanenten Elementarmagnete untereinander! spontane Magnetisierung!


'''Diamagnetismus: '''die magnetischen Momente werden erst durch ein äußeres Magnetfeld induziert -> Abstoßung ( Lenzsche Regel) !
'''Diamagnetismus: '''die magnetischen Momente werden erst durch ein äußeres Magnetfeld induziert Abstoßung (Lenzsche Regel)!


====Modell eines Paramagneten====
====Modell eines Paramagneten====


N ortsfeste ( und somit unterscheidbare Teilchen !) mit Drehimpuls <math>\bar{L}</math>
N ortsfeste (und somit unterscheidbare Teilchen!) mit Drehimpuls <math>\bar{L}</math>


im Magnetfeld der Induktion <math>\bar{B}</math>
im Magnetfeld der Induktion <math>\bar{B}</math>
Line 19: Line 19:
Energie:
Energie:


<math>\begin{align}
:<math>\begin{align}


& E=-\mu B{{m}_{l}} \\
& E=-\mu B{{m}_{l}} \\
Line 31: Line 31:
mit <math>{{\mu }_{Bohr}}</math>
mit <math>{{\mu }_{Bohr}}</math>


= Bohrsches Magneton !
= Bohrsches Magneton!


z.B. Spin: <math>l=\frac{1}{2},g=2,{{m}_{l}}=\pm 1</math>
z.B. Spin: <math>l=\frac{1}{2},g=2,{{m}_{l}}=\pm 1</math>
Line 39: Line 39:
<u>'''Einteilchen- Zustandssumme'''</u>
<u>'''Einteilchen- Zustandssumme'''</u>


<math>\begin{align}
:<math>\begin{align}


& Z=\sum\limits_{{{m}_{l}}=-l}^{l}{{}}\exp \left( \beta \mu B{{m}_{l}} \right) \\
& Z=\sum\limits_{{{m}_{l}}=-l}^{l}{{}}\exp \left( \beta \mu B{{m}_{l}} \right) \\
Line 51: Line 51:
Beispiel:  l = 1/2:
Beispiel:  l = 1/2:


<math>\Rightarrow Z=\frac{\sinh \left( \beta \mu B \right)}{\sinh \left( \frac{1}{2}\beta \mu B \right)}=2\cosh \left( \frac{1}{2}\beta \mu B \right)</math>
:<math>\Rightarrow Z=\frac{\sinh \left( \beta \mu B \right)}{\sinh \left( \frac{1}{2}\beta \mu B \right)}=2\cosh \left( \frac{1}{2}\beta \mu B \right)</math>


Als '''Einteilchenzustandssumme'''
Als '''Einteilchenzustandssumme'''


<u>'''Magnetisierung M  '''</u> ( = mittleres magnetisches Moment pro Volumen )
<u>'''Magnetisierung M  '''</u> (= mittleres magnetisches Moment pro Volumen)


<math>\begin{align}
:<math>\begin{align}


& M=\frac{N}{V}\sum\limits_{{{m}_{l}}=-l}^{l}{{}}\mu {{m}_{l}}{{Z}^{-1}}\exp \left( \beta \mu B{{m}_{l}} \right)=\frac{N}{V}\frac{1}{Z}\sum\limits_{{{m}_{l}}=-l}^{l}{{}}\mu {{m}_{l}}\exp \left( \beta \mu B{{m}_{l}} \right) \\
& M=\frac{N}{V}\sum\limits_{{{m}_{l}}=-l}^{l}{{}}\mu {{m}_{l}}{{Z}^{-1}}\exp \left( \beta \mu B{{m}_{l}} \right)=\frac{N}{V}\frac{1}{Z}\sum\limits_{{{m}_{l}}=-l}^{l}{{}}\mu {{m}_{l}}\exp \left( \beta \mu B{{m}_{l}} \right) \\
Line 71: Line 71:
z.B.  l= 1/2:
z.B.  l= 1/2:


<math>M=\frac{N}{V}\mu \frac{1}{2}\tanh \left( \frac{1}{2}\beta \mu B \right)</math>
:<math>M=\frac{N}{V}\mu \frac{1}{2}\tanh \left( \frac{1}{2}\beta \mu B \right)</math>


( Lorgevin- Funktion )
(Lorgevin- Funktion)


Dies entspricht einer thermischen Zustandsgleichung
Dies entspricht einer thermischen Zustandsgleichung


<math>M\left( T,V,B \right)</math>
:<math>M\left( T,V,B \right)</math>


====Hohe Temperaturen====
====Hohe Temperaturen====


<math>kT>>\mu B</math>
:<math>kT>>\mu B</math>


Beispiel: B= 1 Tesla -> T >> 1K
Beispiel: B= 1 Tesla T >> 1K


Entwicklung
Entwicklung


<math>\begin{align}
:<math>\begin{align}


& \coth x\approx \frac{1}{x}+\frac{x}{3}+... \\
& \coth x\approx \frac{1}{x}+\frac{x}{3}+... \\
Line 95: Line 95:
\end{align}</math>
\end{align}</math>


<math>\Rightarrow M=\frac{N}{V}\frac{l\left( l+1 \right)}{3}\beta {{\mu }^{2}}B</math>
:<math>\Rightarrow M=\frac{N}{V}\frac{l\left( l+1 \right)}{3}\beta {{\mu }^{2}}B</math>


'''linear '''in B !
'''linear '''in B!


speziell:  l= 1/2:
speziell:  l= 1/2:


<math>\Rightarrow M\left( T,V,B \right)=\frac{N}{V}\frac{{{\mu }^{2}}B}{4kT}</math>
:<math>\Rightarrow M\left( T,V,B \right)=\frac{N}{V}\frac{{{\mu }^{2}}B}{4kT}</math>


Curie- Gesetz !!
Curie- Gesetz!!


'''magnetische Suszeptibilität  '''<math>{{\chi }_{m}}</math>
'''magnetische Suszeptibilität  '''<math>{{\chi }_{m}}</math>
Line 109: Line 109:
definiert durch
definiert durch


<math>M={{\chi }_{m}}H</math>
:<math>M={{\chi }_{m}}H</math>


<math>B={{\mu }_{0}}\left( H+M \right)={{\mu }_{0}}\left( 1+{{\chi }_{m}} \right)H</math>
:<math>B={{\mu }_{0}}\left( H+M \right)={{\mu }_{0}}\left( 1+{{\chi }_{m}} \right)H</math>


mit dem Magnetfeld <math>H</math>
mit dem Magnetfeld <math>H</math>
Line 119: Line 119:
als absolute Permeabilität
als absolute Permeabilität


<math>\Rightarrow M=\frac{1}{{{\mu }_{0}}}\frac{{{\chi }_{m}}}{1+{{\chi }_{m}}}B\approx \frac{1}{{{\mu }_{0}}}{{\chi }_{m}}B</math>
:<math>\Rightarrow M=\frac{1}{{{\mu }_{0}}}\frac{{{\chi }_{m}}}{1+{{\chi }_{m}}}B\approx \frac{1}{{{\mu }_{0}}}{{\chi }_{m}}B</math>


'''Vergleich mit der thermischen Zustandsgleichung:'''
'''Vergleich mit der thermischen Zustandsgleichung:'''


<math>{{\chi }_{m}}={{\mu }_{0}}\frac{N}{V}\frac{l\left( l+1 \right)}{3}\frac{{{\mu }^{2}}}{kT}=\frac{C}{T}</math>
:<math>{{\chi }_{m}}={{\mu }_{0}}\frac{N}{V}\frac{l\left( l+1 \right)}{3}\frac{{{\mu }^{2}}}{kT}=\frac{C}{T}</math>


Mit der Curie- Konstanten C !
Mit der Curie- Konstanten C!


( Mit zunehmender Temperatur wird die Ausrichtung der Momente in Feldrichtung durch die Wärmebewegung der Momente gestört ! )
(Mit zunehmender Temperatur wird die Ausrichtung der Momente in Feldrichtung durch die Wärmebewegung der Momente gestört!)


'''Tiefe Temperaturen, hohe Magnetfelder:'''
'''Tiefe Temperaturen, hohe Magnetfelder:'''


<math>\begin{align}
:<math>\begin{align}


& kT<<\mu B \\
& kT<<\mu B \\
Line 141: Line 141:
für <math>x\to \infty </math>
für <math>x\to \infty </math>


<math>\Rightarrow M=\frac{N}{V}\mu \left( \left( l+\frac{1}{2} \right)-\frac{1}{2} \right)=\frac{N}{V}\mu l</math>
:<math>\Rightarrow M=\frac{N}{V}\mu \left( \left( l+\frac{1}{2} \right)-\frac{1}{2} \right)=\frac{N}{V}\mu l</math>


Also:
Also:
Line 149: Line 149:
----
----


<math>\bar{\mu }\uparrow \uparrow \bar{B}</math>
:<math>\bar{\mu }\uparrow \uparrow \bar{B}</math>


====Vergleich mit der klassischen rechnung====
====Vergleich mit der klassischen rechnung====
<math>\bar{E}=-\bar{m}\bar{B}=-mB\cos \alpha </math>
:<math>\bar{E}=-\bar{m}\bar{B}=-mB\cos \alpha </math>


mit <math>\left| {\bar{m}} \right|</math>
mit <math>\left| {\bar{m}} \right|</math>


fest ( magnetisches Moment !) und <math>\alpha </math>
fest (magnetisches Moment!) und <math>\alpha </math>


Phasenraumvariable !, Winkel zwischen dem B- Feld und den magnetischen Momenten !
Phasenraumvariable!, Winkel zwischen dem B- Feld und den magnetischen Momenten!


'''Klassische Zustandssumme:'''
'''Klassische Zustandssumme:'''


<math>Z\tilde{\ }\int_{-1}^{1}{{}}d\left( \cos \alpha  \right)\exp \left( \beta mB\left( \cos \alpha  \right) \right)\tilde{\ }\frac{\sinh \left( \beta mB \right)}{B}</math>
:<math>Z\tilde{\ }\int_{-1}^{1}{{}}d\left( \cos \alpha  \right)\exp \left( \beta mB\left( \cos \alpha  \right) \right)\tilde{\ }\frac{\sinh \left( \beta mB \right)}{B}</math>


<math>\begin{align}
:<math>\begin{align}


& M=\frac{N}{V}\frac{1}{\beta }\frac{\partial }{\partial B}\ln Z=\frac{N}{V}\frac{B}{\sinh \left( \beta mB \right)}\frac{1}{\beta }\frac{\partial }{\partial B}\left( \frac{\sinh \left( \beta mB \right)}{B} \right) \\
& M=\frac{N}{V}\frac{1}{\beta }\frac{\partial }{\partial B}\ln Z=\frac{N}{V}\frac{B}{\sinh \left( \beta mB \right)}\frac{1}{\beta }\frac{\partial }{\partial B}\left( \frac{\sinh \left( \beta mB \right)}{B} \right) \\
Line 172: Line 172:
\end{align}</math>
\end{align}</math>


<u>'''Vergleich für l=1/2, g=2  ( Spin)'''</u>
<u>'''Vergleich für l=1/2, g=2  (Spin)'''</u>


<math>\begin{align}
:<math>\begin{align}


& \frac{MV}{Nm}=\left( \coth \left( \beta mB \right)-\frac{1}{\beta mB} \right)=\left( \coth x-\frac{1}{x} \right) \\
& \frac{MV}{Nm}=\left( \coth \left( \beta mB \right)-\frac{1}{\beta mB} \right)=\left( \coth x-\frac{1}{x} \right) \\
Line 186: Line 186:
im Gegensatz zu quantentheoretisch: <math>\frac{MV}{Nm}=\tanh x</math>
im Gegensatz zu quantentheoretisch: <math>\frac{MV}{Nm}=\tanh x</math>


Also für x-> 0  ( hohe Temperaturen):
Also für x→ 0  (hohe Temperaturen):


<math>\frac{MV}{Nm}\to \frac{x}{3}</math>
:<math>\frac{MV}{Nm}\to \frac{x}{3}</math>


( klassisch)
(klassisch)


<math>\frac{MV}{Nm}\to x</math>
:<math>\frac{MV}{Nm}\to x</math>


( quantentheoretisch !)
(quantentheoretisch!)


und für  x -> <math>\infty </math>
und für  x <math>\infty </math>


( tiefe Temperaturen):
(tiefe Temperaturen):


<math>\frac{MV}{Nm}\to 1-\frac{1}{x}</math>
:<math>\frac{MV}{Nm}\to 1-\frac{1}{x}</math>


( klassisch)
(klassisch)


<math>\frac{MV}{Nm}\to 1-{{e}^{-2x}}</math>
:<math>\frac{MV}{Nm}\to 1-{{e}^{-2x}}</math>


( quantentheoretisch)
(quantentheoretisch)


Somit folgt ( die obere Kurve ist die quantentheoretisch ermittelte):
Somit folgt (die obere Kurve ist die quantentheoretisch ermittelte):


Abszisse: x  =  mB/(kT)
Abszisse: x  =  mB/(kT)
Line 214: Line 214:
Ordinate:  MV/Nm
Ordinate:  MV/Nm


Wie man sieht, weichen die beiden Rechnungen stark voneinander ab !
Wie man sieht, weichen die beiden Rechnungen stark voneinander ab!


<u>'''Vergleich für l>>1'''</u>
<u>'''Vergleich für l>>1'''</u>
Line 222: Line 222:
und <math>\mu l=m</math>
und <math>\mu l=m</math>


<math>M=\frac{N}{V}m\left( \coth \left( \beta mB \right)-\frac{1}{2l}\coth \frac{\beta mB}{2l} \right)</math>
:<math>M=\frac{N}{V}m\left( \coth \left( \beta mB \right)-\frac{1}{2l}\coth \frac{\beta mB}{2l} \right)</math>


Klassisch dann mit der Näherung
Klassisch dann mit der Näherung


<math>\coth \frac{\beta mB}{2l}\approx \frac{2l}{\beta mB}</math>
:<math>\coth \frac{\beta mB}{2l}\approx \frac{2l}{\beta mB}</math>


für
für


<math>kT>mB</math>
:<math>kT>mB</math>


klassisch:
klassisch:


<math>M=\frac{N}{V}m\left( \coth \left( \beta mB \right)-\frac{1}{\beta mB} \right)</math>
:<math>M=\frac{N}{V}m\left( \coth \left( \beta mB \right)-\frac{1}{\beta mB} \right)</math>


( klassische Brillouin- Funktion )
(klassische Brillouin- Funktion)


<u>'''Für l=2 folgt:'''</u>
<u>'''Für l=2 folgt:'''</u>


<u>'''Dabei ist die klassische '''</u>Kurve nun steiler ! Die Abweichung ist immer noch immens, da die quantentheoretische Kurve nun genähert ist !
<u>'''Dabei ist die klassische '''</u>Kurve nun steiler! Die Abweichung ist immer noch immens, da die quantentheoretische Kurve nun genähert ist!


Für l=5:
Für l=5:
Line 259: Line 259:
N- Teilchen- Zustandssumme <math>{{Z}^{N}}</math>
N- Teilchen- Zustandssumme <math>{{Z}^{N}}</math>


<math>S=k\left( \ln {{Z}^{N}}+\beta U \right)</math>
:<math>S=k\left( \ln {{Z}^{N}}+\beta U \right)</math>


Statistischer Operator für kanonische Verteilung:
Statistischer Operator für kanonische Verteilung:


<math>{{Z}^{-1}}{{e}^{-\beta H}}</math>
:<math>{{Z}^{-1}}{{e}^{-\beta H}}</math>


<math>\begin{align}
:<math>\begin{align}


& U=-\frac{\partial }{\partial \beta }\ln {{Z}^{N}}=-N\frac{\partial }{\partial \beta }\ln \left[ 2\cosh \left( \frac{\beta \mu B}{2} \right) \right]=-\frac{N\mu B}{2}\frac{\sinh \left( \frac{\beta \mu B}{2} \right)}{\cosh \left( \frac{\beta \mu B}{2} \right)} \\
& U=-\frac{\partial }{\partial \beta }\ln {{Z}^{N}}=-N\frac{\partial }{\partial \beta }\ln \left[ 2\cosh \left( \frac{\beta \mu B}{2} \right) \right]=-\frac{N\mu B}{2}\frac{\sinh \left( \frac{\beta \mu B}{2} \right)}{\cosh \left( \frac{\beta \mu B}{2} \right)} \\
Line 273: Line 273:
\end{align}</math>
\end{align}</math>


( kalorische Zustandsgleichung <math>U\left( T,B \right)</math>
(kalorische Zustandsgleichung <math>U\left( T,B \right)</math>
)


)


<math>\begin{align}
:<math>\begin{align}


& S\left( T \right)=kN\left( \ln Z-\beta \frac{\partial }{\partial \beta }\ln Z \right) \\
& S\left( T \right)=kN\left( \ln Z-\beta \frac{\partial }{\partial \beta }\ln Z \right) \\
Line 287: Line 287:
'''Limes'''
'''Limes'''


<math>\begin{align}
:<math>\begin{align}


& T\to \infty  \\
& T\to \infty  \\
Line 303: Line 303:
\end{align}</math>
\end{align}</math>


'''Im Folgenden ist die Entropie (kN=1) gegen die Temperatur ( arbitrary units) geplottet:'''
'''Im Folgenden ist die Entropie (kN=1) gegen die Temperatur (arbitrary units) geplottet:'''


Dabei sind die Flacheren Kurven für größere Magnetfelder. Bei jeder Kurve wurde das Magnetfeld ( a.u.) verdoppelt !
Dabei sind die Flacheren Kurven für größere Magnetfelder. Bei jeder Kurve wurde das Magnetfeld (a.u.) verdoppelt!


====Adiabatische Entmagnetisierung====
====Adiabatische Entmagnetisierung====


Bei paramagnetischen Salzen sind bei tiefen Temperaturen die Gitterschwingungen schon eingefroren. Noch tiefere Temperaturen erreicht man dann durch die adiabatische Entmagnetisierung ( insbesondere mit Kernspin)
Bei paramagnetischen Salzen sind bei tiefen Temperaturen die Gitterschwingungen schon eingefroren. Noch tiefere Temperaturen erreicht man dann durch die adiabatische Entmagnetisierung (insbesondere mit Kernspin)

Latest revision as of 00:53, 13 September 2010


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=5|Abschnitt=7}} Kategorie:Thermodynamik __SHOWFACTBOX__


Paramagnetismus: vorhandene magnetische Momente werden durch ein äußeres Magnetfeld ausgerichtet! Keine WW der Elementarmagnete untereinander

Ferromagnetismus: Korrelation der permanenten Elementarmagnete untereinander! → spontane Magnetisierung!

Diamagnetismus: die magnetischen Momente werden erst durch ein äußeres Magnetfeld induziert → Abstoßung (Lenzsche Regel)!

Modell eines Paramagneten[edit | edit source]

N ortsfeste (und somit unterscheidbare Teilchen!) mit Drehimpuls

im Magnetfeld der Induktion

Drehimpulsquantisierung:

Energie:

mit

= Bohrsches Magneton!

z.B. Spin:

Bahn:

Einteilchen- Zustandssumme

Beispiel: l = 1/2:

Als Einteilchenzustandssumme

Magnetisierung M (= mittleres magnetisches Moment pro Volumen)

Brillouin- Funktion

z.B. l= 1/2:

(Lorgevin- Funktion)

Dies entspricht einer thermischen Zustandsgleichung

Hohe Temperaturen[edit | edit source]

Beispiel: B= 1 Tesla → T >> 1K

Entwicklung

linear in B!

speziell: l= 1/2:

Curie- Gesetz!!

magnetische Suszeptibilität

definiert durch

mit dem Magnetfeld

und

als absolute Permeabilität

Vergleich mit der thermischen Zustandsgleichung:

Mit der Curie- Konstanten C!

(Mit zunehmender Temperatur wird die Ausrichtung der Momente in Feldrichtung durch die Wärmebewegung der Momente gestört!)

Tiefe Temperaturen, hohe Magnetfelder:

für

Also:

Vollständige Ausrichtung aller Momente


Vergleich mit der klassischen rechnung[edit | edit source]

mit

fest (magnetisches Moment!) und

Phasenraumvariable!, Winkel zwischen dem B- Feld und den magnetischen Momenten!

Klassische Zustandssumme:

Vergleich für l=1/2, g=2 (Spin)

klassisch

im Gegensatz zu quantentheoretisch:

Also für x→ 0 (hohe Temperaturen):

(klassisch)

(quantentheoretisch!)

und für x →

(tiefe Temperaturen):

(klassisch)

(quantentheoretisch)

Somit folgt (die obere Kurve ist die quantentheoretisch ermittelte):

Abszisse: x = mB/(kT)

Ordinate: MV/Nm

Wie man sieht, weichen die beiden Rechnungen stark voneinander ab!

Vergleich für l>>1

quantentheoretisch:

und

Klassisch dann mit der Näherung

für

klassisch:

(klassische Brillouin- Funktion)

Für l=2 folgt:

Dabei ist die klassische Kurve nun steiler! Die Abweichung ist immer noch immens, da die quantentheoretische Kurve nun genähert ist!

Für l=5:


und schließlich l=10:

Dabei wurde wieder

Abszisse: x = mB/(kT)

Ordinate: MV/Nm

Energie und Entropie[edit | edit source]

Entropie S für

N- Teilchen- Zustandssumme

Statistischer Operator für kanonische Verteilung:

(kalorische Zustandsgleichung )


Limes

Im Folgenden ist die Entropie (kN=1) gegen die Temperatur (arbitrary units) geplottet:

Dabei sind die Flacheren Kurven für größere Magnetfelder. Bei jeder Kurve wurde das Magnetfeld (a.u.) verdoppelt!

Adiabatische Entmagnetisierung[edit | edit source]

Bei paramagnetischen Salzen sind bei tiefen Temperaturen die Gitterschwingungen schon eingefroren. Noch tiefere Temperaturen erreicht man dann durch die adiabatische Entmagnetisierung (insbesondere mit Kernspin)