Das ideale Bosegas: Difference between revisions

From testwiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(3 intermediate revisions by one other user not shown)
Line 4: Line 4:
Rechnung geht analog zum Fermigas, nur dass die Besetzungszahlen Nj bis unendlich laufen können:
Rechnung geht analog zum Fermigas, nur dass die Besetzungszahlen Nj bis unendlich laufen können:


<math>\begin{align}
:<math>\begin{align}
   & Y=\sum\limits_{{{N}_{1}}...{{N}_{l}}=0}^{\infty }{{}}\exp \left( -\beta \sum\limits_{j=1}^{l}{{}}\left( {{N}_{j}}{{E}_{j}}-\mu {{N}_{j}} \right) \right)=\prod\limits_{j=1}^{l}{{}}\left( \sum\limits_{{{N}_{j}}=0}^{\infty }{{}}\exp \left( -\beta \left( {{N}_{j}}{{E}_{j}}-\mu {{N}_{j}} \right) \right) \right) \\  
   & Y=\sum\limits_{{{N}_{1}}...{{N}_{l}}=0}^{\infty }{{}}\exp \left( -\beta \sum\limits_{j=1}^{l}{{}}\left( {{N}_{j}}{{E}_{j}}-\mu {{N}_{j}} \right) \right)=\prod\limits_{j=1}^{l}{{}}\left( \sum\limits_{{{N}_{j}}=0}^{\infty }{{}}\exp \left( -\beta \left( {{N}_{j}}{{E}_{j}}-\mu {{N}_{j}} \right) \right) \right) \\  
  & =\prod\limits_{j=1}^{l}{{}}\left( \sum\limits_{{{N}_{j}}=0}^{\infty }{{}}{{t}_{j}}^{{{N}_{j}}} \right) \\  
  & =\prod\limits_{j=1}^{l}{{}}\left( \sum\limits_{{{N}_{j}}=0}^{\infty }{{}}{{t}_{j}}^{{{N}_{j}}} \right) \\  
Line 11: Line 11:
\end{align}</math>
\end{align}</math>


Die geometrische Reihe konvergiert genau dann, wenn <math>{{t}_{j}}<1</math>
Die geometrische Reihe konvergiert genau dann, wenn <math>{{t}_{j}}<1</math>, also wenn <math>{{E}_{j}}>\mu </math>
, also wenn <math>{{E}_{j}}>\mu </math>


Bose - Einstein- Kondensation erfolgt bereits, wenn Ej=µ !
à Bose - Einstein- Kondensation erfolgt bereits, wenn Ej=µ!


Somit ergibt sich die Wahrscheinlichkeit, die Besetzungszahlen N1, N2, .... der Einteilchenzustände E1, E2,.... zu finden:
Somit ergibt sich die Wahrscheinlichkeit, die Besetzungszahlen N1, N2,.... der Einteilchenzustände E1, E2,.... zu finden:


<math>\begin{align}
:<math>\begin{align}
   & P\left( {{N}_{1}},{{N}_{2}},... \right)={{Y}^{-1}}\exp \left( -\beta \left( {{N}_{j}}{{E}_{j}}-\mu {{N}_{j}} \right) \right)=\prod\limits_{j=1}^{l}{{}}\left( 1-{{t}_{j}} \right){{t}_{j}}^{{{N}_{j}}}=\prod\limits_{j=1}^{l}{{}}p\left( {{N}_{j}} \right) \\  
   & P\left( {{N}_{1}},{{N}_{2}},... \right)={{Y}^{-1}}\exp \left( -\beta \left( {{N}_{j}}{{E}_{j}}-\mu {{N}_{j}} \right) \right)=\prod\limits_{j=1}^{l}{{}}\left( 1-{{t}_{j}} \right){{t}_{j}}^{{{N}_{j}}}=\prod\limits_{j=1}^{l}{{}}p\left( {{N}_{j}} \right) \\  
  & (separiert) \\  
  & (separiert) \\  
Line 30: Line 29:
Mittlere Besetzungszahl im Zustand Ej:
Mittlere Besetzungszahl im Zustand Ej:


<math>\begin{align}
:<math>\begin{align}
   & \left\langle {{N}_{j}} \right\rangle =\frac{\partial {{\Psi }_{j}}}{\partial \alpha }=\frac{1}{\beta }\frac{\partial }{\partial \mu }\ln {{Y}_{j}}=-\frac{1}{\beta }\frac{\partial }{\partial \mu }\ln \left( 1-{{t}_{j}} \right)=\frac{{{t}_{j}}}{1-{{t}_{j}}}=\frac{1}{{{t}_{j}}^{-1}-1} \\  
   & \left\langle {{N}_{j}} \right\rangle =\frac{\partial {{\Psi }_{j}}}{\partial \alpha }=\frac{1}{\beta }\frac{\partial }{\partial \mu }\ln {{Y}_{j}}=-\frac{1}{\beta }\frac{\partial }{\partial \mu }\ln \left( 1-{{t}_{j}} \right)=\frac{{{t}_{j}}}{1-{{t}_{j}}}=\frac{1}{{{t}_{j}}^{-1}-1} \\  
  & \left\langle {{N}_{j}} \right\rangle =\frac{1}{\exp \left( \beta \left( {{E}_{j}}-\mu  \right) \right)-1}=\frac{1}{\exp \left( \frac{\left( {{E}_{j}}-\mu  \right)}{kT} \right)-1} \\  
  & \left\langle {{N}_{j}} \right\rangle =\frac{1}{\exp \left( \beta \left( {{E}_{j}}-\mu  \right) \right)-1}=\frac{1}{\exp \left( \frac{\left( {{E}_{j}}-\mu  \right)}{kT} \right)-1} \\  
Line 36: Line 35:




0.1.1 Bose- Verteilung
== Bose- Verteilung ==


Die Bose- Verteilung folgt auch explizit aus
Die Bose- Verteilung folgt auch explizit aus
<math>\begin{align}
:<math>\begin{align}
   & \left\langle {{N}_{j}} \right\rangle =\sum\limits_{{{N}_{j}}=0}^{\infty }{{}}{{N}_{j}}p({{N}_{j}})=\sum\limits_{{{N}_{j}}=0}^{\infty }{{}}{{N}_{j}}\left( 1-{{t}_{j}} \right){{t}_{j}}^{{{N}_{j}}}=\left( 1-{{t}_{j}} \right){{t}_{j}}\frac{d}{d{{t}_{j}}}\sum\limits_{{{N}_{j}}=0}^{\infty }{{}}{{t}_{j}}^{{{N}_{j}}} \\  
   & \left\langle {{N}_{j}} \right\rangle =\sum\limits_{{{N}_{j}}=0}^{\infty }{{}}{{N}_{j}}p({{N}_{j}})=\sum\limits_{{{N}_{j}}=0}^{\infty }{{}}{{N}_{j}}\left( 1-{{t}_{j}} \right){{t}_{j}}^{{{N}_{j}}}=\left( 1-{{t}_{j}} \right){{t}_{j}}\frac{d}{d{{t}_{j}}}\sum\limits_{{{N}_{j}}=0}^{\infty }{{}}{{t}_{j}}^{{{N}_{j}}} \\  
  & =\left( 1-{{t}_{j}} \right){{t}_{j}}\frac{d}{d{{t}_{j}}}\left( \frac{1}{1-{{t}_{j}}} \right)=\left( 1-{{t}_{j}} \right){{t}_{j}}\left( \frac{1}{{{\left( 1-{{t}_{j}} \right)}^{2}}} \right)=\frac{{{t}_{j}}}{\left( 1-{{t}_{j}} \right)} \\  
  & =\left( 1-{{t}_{j}} \right){{t}_{j}}\frac{d}{d{{t}_{j}}}\left( \frac{1}{1-{{t}_{j}}} \right)=\left( 1-{{t}_{j}} \right){{t}_{j}}\left( \frac{1}{{{\left( 1-{{t}_{j}} \right)}^{2}}} \right)=\frac{{{t}_{j}}}{\left( 1-{{t}_{j}} \right)} \\  
Line 47: Line 46:




Die Verteilung divergiert für Ej -> µ. Das heißt: Die Zustandssumme Yj divergiert für Ej->µ
Die Verteilung divergiert für Ej µ. Das heißt: Die Zustandssumme Yj divergiert für Ej→µ


Vergleich aller drei Verteilungen:
Vergleich aller drei Verteilungen:
<math>\left\langle {{N}_{j}} \right\rangle =\frac{1}{\exp \left( \frac{\left( {{E}_{j}}-\mu  \right)}{kT} \right)-k}\left\{ \begin{matrix}
:<math>\left\langle {{N}_{j}} \right\rangle =\frac{1}{\exp \left( \frac{\left( {{E}_{j}}-\mu  \right)}{kT} \right)-k}\left\{ \begin{matrix}
   k=1  \\
   k=1  \\
   k=0  \\
   k=0  \\
Line 57: Line 56:




mit k=-1 -> Fermi - Dirac- Statistik
mit k=-1 Fermi - Dirac- Statistik
k=0 -> Maxwell- Boltzmann
k=0 Maxwell- Boltzmann
k=  + 1  ->   Bose - Einstein !
k=  + 1    Bose - Einstein!




Line 68: Line 67:
Fugazität: <math>\xi ={{e}^{\beta \mu }}</math>
Fugazität: <math>\xi ={{e}^{\beta \mu }}</math>


<math>\begin{align}
:<math>\begin{align}
   & \ln Y=\prod\limits_{j=1}^{l}{{}}\ln {{Y}_{j}}=-\sum\limits_{j}^{{}}{{}}\ln \left( 1-\zeta {{e}^{-\beta {{E}_{j}}}} \right) \\  
   & \ln Y=\prod\limits_{j=1}^{l}{{}}\ln {{Y}_{j}}=-\sum\limits_{j}^{{}}{{}}\ln \left( 1-\zeta {{e}^{-\beta {{E}_{j}}}} \right) \\  
  & \approx -\left( 2s+1 \right)\frac{4\pi V}{{{h}^{3}}}\int_{0}^{\infty }{{}}dp{{p}^{2}}\ln \left( 1-\zeta {{e}^{-\beta \frac{{{p}^{2}}}{2m}}} \right) \\  
  & \approx -\left( 2s+1 \right)\frac{4\pi V}{{{h}^{3}}}\int_{0}^{\infty }{{}}dp{{p}^{2}}\ln \left( 1-\zeta {{e}^{-\beta \frac{{{p}^{2}}}{2m}}} \right) \\  
Line 79: Line 78:
somit folgt:
somit folgt:


<math>pV=kT\ln Y=\frac{2}{3}U</math>
:<math>pV=kT\ln Y=\frac{2}{3}U</math>


also identisch zum fermigas ! ( S. 131)
also identisch zum fermigas! (S. 131)


0.1.2 Verdünntes Bosegas
== Verdünntes Bosegas ==


( quasiklassischer, nicht entarteter Grenzfall)
(quasiklassischer, nicht entarteter Grenzfall)


Nebenbemerkung:  Entartetetes Bosegas hoher Dichte kann nicht wie im Fermifall behandelt werden, da die Zustandssumme für Ej < µ  divergiert !
Nebenbemerkung:  Entartetetes Bosegas hoher Dichte kann nicht wie im Fermifall behandelt werden, da die Zustandssumme für Ej < µ  divergiert!


Entwicklung nach Potenzen von  
Entwicklung nach Potenzen von  
<math>\xi ={{e}^{\frac{\mu }{kT}}}<<1</math>
:<math>\xi ={{e}^{\frac{\mu }{kT}}}<<1</math>


also:
also:
<math>\mu <0</math>
:<math>\mu <0</math>




Line 101: Line 100:




<math>\begin{align}
:<math>\begin{align}
   & \bar{N}=\sum\limits_{j}^{{}}{{}}\left\langle {{N}_{j}} \right\rangle \approx \left( 2s+1 \right)\frac{4\pi V}{{{h}^{3}}}\int_{0}^{\infty }{{}}dp{{p}^{2}}\frac{1}{\exp \left( \frac{\left( {{E}_{j}}-\mu  \right)}{kT} \right)-1}=\left( 2s+1 \right)\frac{4\pi V}{{{h}^{3}}}\int_{0}^{\infty }{{}}dp{{p}^{2}}\frac{1}{\exp \left( \frac{\left( \frac{{{p}^{2}}}{2m}-\mu  \right)}{kT} \right)-1} \\  
   & \bar{N}=\sum\limits_{j}^{{}}{{}}\left\langle {{N}_{j}} \right\rangle \approx \left( 2s+1 \right)\frac{4\pi V}{{{h}^{3}}}\int_{0}^{\infty }{{}}dp{{p}^{2}}\frac{1}{\exp \left( \frac{\left( {{E}_{j}}-\mu  \right)}{kT} \right)-1}=\left( 2s+1 \right)\frac{4\pi V}{{{h}^{3}}}\int_{0}^{\infty }{{}}dp{{p}^{2}}\frac{1}{\exp \left( \frac{\left( \frac{{{p}^{2}}}{2m}-\mu  \right)}{kT} \right)-1} \\  
  & \frac{{{p}^{2}}}{2mkT}=y \\  
  & \frac{{{p}^{2}}}{2mkT}=y \\  
Line 118: Line 117:




<math>\Delta \bar{N}=\left( 2s+1 \right)\frac{V}{{{\lambda }^{3}}}{{e}^{\frac{\mu }{kT}}}\frac{1}{{{2}^{\frac{3}{2}}}}{{e}^{\frac{\mu }{kT}}}</math>
:<math>\Delta \bar{N}=\left( 2s+1 \right)\frac{V}{{{\lambda }^{3}}}{{e}^{\frac{\mu }{kT}}}\frac{1}{{{2}^{\frac{3}{2}}}}{{e}^{\frac{\mu }{kT}}}</math>
  als Quantenkorrektur
  als Quantenkorrektur


Line 127: Line 126:


0. Näherung:  
0. Näherung:  
<math>\bar{N}=\left( 2s+1 \right)\frac{V}{{{\lambda }^{3}}}{{e}^{\frac{\mu }{kT}}}</math>
:<math>\bar{N}=\left( 2s+1 \right)\frac{V}{{{\lambda }^{3}}}{{e}^{\frac{\mu }{kT}}}</math>
   
   
1. Näherung:
1. Näherung:
<math>\begin{align}
:<math>\begin{align}
   & \bar{N}=\left( 2s+1 \right)\frac{V}{{{\lambda }^{3}}}{{e}^{\frac{\mu }{kT}}}\left[ 1+\frac{1}{{{2}^{\frac{3}{2}}}}\frac{\bar{N}{{\lambda }^{3}}}{V\left( 2s+1 \right)} \right] \\  
   & \bar{N}=\left( 2s+1 \right)\frac{V}{{{\lambda }^{3}}}{{e}^{\frac{\mu }{kT}}}\left[ 1+\frac{1}{{{2}^{\frac{3}{2}}}}\frac{\bar{N}{{\lambda }^{3}}}{V\left( 2s+1 \right)} \right] \\  
  & \Rightarrow {{e}^{\frac{\mu }{kT}}}\approx \frac{\bar{N}{{\lambda }^{3}}}{V\left( 2s+1 \right)}\left[ 1-\frac{1}{{{2}^{\frac{3}{2}}}}\frac{\bar{N}{{\lambda }^{3}}}{V\left( 2s+1 \right)} \right] \\  
  & \Rightarrow {{e}^{\frac{\mu }{kT}}}\approx \frac{\bar{N}{{\lambda }^{3}}}{V\left( 2s+1 \right)}\left[ 1-\frac{1}{{{2}^{\frac{3}{2}}}}\frac{\bar{N}{{\lambda }^{3}}}{V\left( 2s+1 \right)} \right] \\  
Line 137: Line 136:


Innere Energie:
Innere Energie:
<math>\begin{align}
:<math>\begin{align}
   & U=\left( 2s+1 \right)\frac{4\pi V}{{{h}^{3}}}\int_{0}^{\infty }{{}}dp{{p}^{2}}\frac{\frac{{{p}^{2}}}{2m}}{\exp \left( \frac{\left( \frac{{{p}^{2}}}{2m}-\mu  \right)}{kT} \right)-1} \\  
   & U=\left( 2s+1 \right)\frac{4\pi V}{{{h}^{3}}}\int_{0}^{\infty }{{}}dp{{p}^{2}}\frac{\frac{{{p}^{2}}}{2m}}{\exp \left( \frac{\left( \frac{{{p}^{2}}}{2m}-\mu  \right)}{kT} \right)-1} \\  
  & \frac{{{p}^{2}}}{2mkT}=y \\  
  & \frac{{{p}^{2}}}{2mkT}=y \\  
Line 151: Line 150:
Also folgt als kalorische Zustandsgleichung:
Also folgt als kalorische Zustandsgleichung:


<math>\begin{align}
:<math>\begin{align}
   & U\approx \frac{3}{2}\left( 2s+1 \right)\frac{VkT}{{{\lambda }^{3}}}\xi \left[ 1+\frac{1}{{{2}^{\frac{5}{2}}}}\xi  \right]=\frac{3}{2}\left( 2s+1 \right)kT\frac{V}{{{\lambda }^{3}}}{{e}^{\frac{\mu }{kT}}}\left[ 1+\frac{1}{{{2}^{\frac{5}{2}}}}{{e}^{\frac{\mu }{kT}}} \right]= \\  
   & U\approx \frac{3}{2}\left( 2s+1 \right)\frac{VkT}{{{\lambda }^{3}}}\xi \left[ 1+\frac{1}{{{2}^{\frac{5}{2}}}}\xi  \right]=\frac{3}{2}\left( 2s+1 \right)kT\frac{V}{{{\lambda }^{3}}}{{e}^{\frac{\mu }{kT}}}\left[ 1+\frac{1}{{{2}^{\frac{5}{2}}}}{{e}^{\frac{\mu }{kT}}} \right]= \\  
  &  \\  
  &  \\  
Line 163: Line 162:




<math>\Delta U\approx -\frac{3}{2}kT\bar{N}\frac{1}{{{2}^{\frac{5}{2}}}}\frac{{{\lambda }^{3}}}{V\left( 2s+1 \right)}\bar{N}</math>
:<math>\Delta U\approx -\frac{3}{2}kT\bar{N}\frac{1}{{{2}^{\frac{5}{2}}}}\frac{{{\lambda }^{3}}}{V\left( 2s+1 \right)}\bar{N}</math>




thermische Zustandsgleichung
thermische Zustandsgleichung
<math>pV=\frac{2}{3}U=kT\bar{N}\left[ 1-\frac{1}{{{2}^{\frac{5}{2}}}}\frac{{{\lambda }^{3}}}{V\left( 2s+1 \right)}\bar{N} \right]</math>
:<math>pV=\frac{2}{3}U=kT\bar{N}\left[ 1-\frac{1}{{{2}^{\frac{5}{2}}}}\frac{{{\lambda }^{3}}}{V\left( 2s+1 \right)}\bar{N} \right]</math>


Hier wird der Druck um die Quantenkorrektur
Hier wird der Druck um die Quantenkorrektur


<math>\Delta pV=-kT\bar{N}\frac{1}{{{2}^{\frac{5}{2}}}}\frac{{{\lambda }^{3}}}{V\left( 2s+1 \right)}\bar{N}</math>
:<math>\Delta pV=-kT\bar{N}\frac{1}{{{2}^{\frac{5}{2}}}}\frac{{{\lambda }^{3}}}{V\left( 2s+1 \right)}\bar{N}</math>
  verringert.
  verringert.
Dies ist die sogenannte Bose- Anziehung ! -> Bildung von Bose - Einstein- Kondensaten !
Dies ist die sogenannte Bose- Anziehung! Bildung von Bose - Einstein- Kondensaten!


0.1.3 Bose- Einstein- Kondensation
== Bose- Einstein- Kondensation ==


Grundzustand des Bosegases: Eo=0 ( Verschiebung der Achse geeignet )
Grundzustand des Bosegases: Eo=0 (Verschiebung der Achse geeignet)


Somit:
Somit:
<math>\begin{align}
:<math>\begin{align}
   & \left\langle {{N}_{0}} \right\rangle =\frac{1}{{{\xi }^{-1}}-1}=\frac{\xi }{1-\xi } \\  
   & \left\langle {{N}_{0}} \right\rangle =\frac{1}{{{\xi }^{-1}}-1}=\frac{\xi }{1-\xi } \\  
  & \xi ={{e}^{\beta \mu }} \\  
  & \xi ={{e}^{\beta \mu }} \\  
Line 189: Line 188:
Die mittlere Besetzungszahl dieses Quantenzustandes kann makroskopisch groß werden für <math>\xi \approx 1</math>
Die mittlere Besetzungszahl dieses Quantenzustandes kann makroskopisch groß werden für <math>\xi \approx 1</math>


<math>\left\langle {{N}_{0}} \right\rangle \approx \bar{N}</math>
:<math>\left\langle {{N}_{0}} \right\rangle \approx \bar{N}</math>


( alle Teilchen kondensieren im grundzustand )
(alle Teilchen kondensieren im grundzustand)


Allgemein:
Allgemein:


<math>\begin{align}
:<math>\begin{align}
   & \bar{N}=\left\langle {{N}_{0}} \right\rangle +N\acute{\ } \\  
   & \bar{N}=\left\langle {{N}_{0}} \right\rangle +N\acute{\ } \\  
  & N\acute{\ }=\sum\limits_{j>0}^{{}}{{}}\left\langle {{N}_{j}} \right\rangle  \\  
  & N\acute{\ }=\sum\limits_{j>0}^{{}}{{}}\left\langle {{N}_{j}} \right\rangle  \\  
Line 201: Line 200:


1) Normale Phase:
1) Normale Phase:
<math>\xi ={{e}^{\beta \mu }}<<1</math>
:<math>\xi ={{e}^{\beta \mu }}<<1</math>


<math>\left\langle {{N}_{0}} \right\rangle </math>
:<math>\left\langle {{N}_{0}} \right\rangle </math>
  ist vernachlässigbar ! -> verdünntes Bosegas, siehe oben, S. 140 ff.
  ist vernachlässigbar! verdünntes Bosegas, siehe oben, S. 140 ff.


2) kondensierte Phase
2) kondensierte Phase


<math>\xi \approx 1</math>
:<math>\xi \approx 1</math>


<math>N\acute{\ }=\sum\limits_{j>0}^{{}}{{}}\frac{1}{{{e}^{\beta {{E}_{j}}}}-1}<<\bar{N}</math>
:<math>N\acute{\ }=\sum\limits_{j>0}^{{}}{{}}\frac{1}{{{e}^{\beta {{E}_{j}}}}-1}<<\bar{N}</math>


unabhängig von  <math>\xi ={{e}^{\beta \mu }}</math>
unabhängig von  <math>\xi ={{e}^{\beta \mu }}</math>!
!


Kontinuierlicher Fall:
Kontinuierlicher Fall:
Line 219: Line 217:




<math>\frac{N\acute{\ }}{V}\approx \left( 2s+1 \right)\frac{2\pi }{{{h}^{3}}}{{\left( 2mkT \right)}^{\frac{3}{2}}}\int_{0}^{\infty }{{}}dy\frac{{{y}^{\frac{1}{2}}}}{{{e}^{y}}-1}\approx \left( 2s+1 \right){{\left( \frac{2\pi mkT}{{{h}^{2}}} \right)}^{\frac{3}{2}}}\frac{2}{\sqrt{\pi }}\int_{0}^{\infty }{{}}dy{{e}^{-y}}{{y}^{\frac{1}{2}}}</math>
:<math>\frac{N\acute{\ }}{V}\approx \left( 2s+1 \right)\frac{2\pi }{{{h}^{3}}}{{\left( 2mkT \right)}^{\frac{3}{2}}}\int_{0}^{\infty }{{}}dy\frac{{{y}^{\frac{1}{2}}}}{{{e}^{y}}-1}\approx \left( 2s+1 \right){{\left( \frac{2\pi mkT}{{{h}^{2}}} \right)}^{\frac{3}{2}}}\frac{2}{\sqrt{\pi }}\int_{0}^{\infty }{{}}dy{{e}^{-y}}{{y}^{\frac{1}{2}}}</math>


Vergl. S. 141
Vergl. S. 141
<math>\begin{align}
:<math>\begin{align}
   & \frac{N\acute{\ }}{V}\approx \left( 2s+1 \right)\frac{2\pi }{{{h}^{3}}}{{\left( 2mkT \right)}^{\frac{3}{2}}}\int_{0}^{\infty }{{}}dy\frac{{{y}^{\frac{1}{2}}}}{{{e}^{y}}-1}\approx \left( 2s+1 \right){{\left( \frac{2\pi mkT}{{{h}^{2}}} \right)}^{\frac{3}{2}}}\frac{2}{\sqrt{\pi }}\int_{0}^{\infty }{{}}dy{{e}^{-y}}{{y}^{\frac{1}{2}}} \\  
   & \frac{N\acute{\ }}{V}\approx \left( 2s+1 \right)\frac{2\pi }{{{h}^{3}}}{{\left( 2mkT \right)}^{\frac{3}{2}}}\int_{0}^{\infty }{{}}dy\frac{{{y}^{\frac{1}{2}}}}{{{e}^{y}}-1}\approx \left( 2s+1 \right){{\left( \frac{2\pi mkT}{{{h}^{2}}} \right)}^{\frac{3}{2}}}\frac{2}{\sqrt{\pi }}\int_{0}^{\infty }{{}}dy{{e}^{-y}}{{y}^{\frac{1}{2}}} \\  
  & \frac{2}{\sqrt{\pi }}\int_{0}^{\infty }{{}}dy{{e}^{-y}}{{y}^{\frac{1}{2}}}=1 \\  
  & \frac{2}{\sqrt{\pi }}\int_{0}^{\infty }{{}}dy{{e}^{-y}}{{y}^{\frac{1}{2}}}=1 \\  
Line 228: Line 226:
\end{align}</math>
\end{align}</math>


Dabei ist dies der NICHT kondensierte Anteil, eine normale Komponente, die sich wie verdünntes Bosegas verhält !
Dabei ist dies der '''nicht''' kondensierte Anteil, eine normale Komponente, die sich wie verdünntes Bosegas verhält!
<math>\begin{align}
:<math>\begin{align}
   & \frac{N\acute{\ }}{V}=\frac{\left( 2s+1 \right)}{{{\lambda }^{3}}}\tilde{\ }{{T}^{\frac{3}{2}}} \\  
   & \frac{N\acute{\ }}{V}=\frac{\left( 2s+1 \right)}{{{\lambda }^{3}}}\tilde{\ }{{T}^{\frac{3}{2}}} \\  
  & \Rightarrow \frac{N\acute{\ }}{{\bar{N}}}={{\left( \frac{T}{{{T}_{C}}} \right)}^{\frac{3}{2}}} \\  
  & \Rightarrow \frac{N\acute{\ }}{{\bar{N}}}={{\left( \frac{T}{{{T}_{C}}} \right)}^{\frac{3}{2}}} \\  
\end{align}</math>
\end{align}</math>


Die kritische Temperatur ist definiert durch
{{Def|Die kritische Temperatur ist definiert durch


<math>\frac{V}{{\bar{N}}}\frac{\left( 2s+1 \right)}{\lambda {{\left( {{T}_{C}} \right)}^{3}}}=!=1</math>
:<math>\frac{V}{{\bar{N}}}\frac{\left( 2s+1 \right)}{\lambda {{\left( {{T}_{C}} \right)}^{3}}}=!=1</math>|kritische Temperatur}}




Somit ergibt sich der Bruchteil der Kondensierten Teilchen:
Somit ergibt sich der Bruchteil der Kondensierten Teilchen:


<math>\begin{align}
:<math>\begin{align}
   & \frac{\left\langle {{N}_{0}} \right\rangle }{{\bar{N}}}=1-{{\left( \frac{T}{{{T}_{C}}} \right)}^{\frac{3}{2}}}\quad f\ddot{u}r\quad T<{{T}_{C}} \\  
   & \frac{\left\langle {{N}_{0}} \right\rangle }{{\bar{N}}}=1-{{\left( \frac{T}{{{T}_{C}}} \right)}^{\frac{3}{2}}}\quad f\ddot{u}r\quad T<{{T}_{C}} \\  
  & \frac{\left\langle {{N}_{0}} \right\rangle }{{\bar{N}}}=0\quad f\ddot{u}r\quad T>{{T}_{C}} \\  
  & \frac{\left\langle {{N}_{0}} \right\rangle }{{\bar{N}}}=0\quad f\ddot{u}r\quad T>{{T}_{C}} \\  
Line 248: Line 246:




Das markierte Gebiet ist das Gebiet der Bose- Einstein-Kondensation !  
Das markierte Gebiet ist das Gebiet der Bose- Einstein-Kondensation!  
Bei zweikomponentigen Gasen liegt eine normale und ein kondensierte Komponente vor.
Bei zweikomponentigen Gasen liegt eine normale und ein kondensierte Komponente vor.
Dann wird der Druck nur durch die normale Komponente alleine bestimmt !
Dann wird der Druck nur durch die normale Komponente alleine bestimmt!
Vergleiche dazu auch: Dampfdruck  über einer Flüssigkeit !
Vergleiche dazu auch: Dampfdruck  über einer Flüssigkeit!


Phasenübegang bei <math>{{T}_{C}}</math>
Phasenübegang bei <math>{{T}_{C}}</math>:
:
normale Phase - >Kondensierte Phase  
normale Phase - >Kondensierte Phase  
Vorgang der Bose- Einstein- Kondensation  
Vorgang der Bose- Einstein- Kondensation  
ein makroskopisches Quantenphänomen !
è ein makroskopisches Quantenphänomen!


Anwendung:
Anwendung:


Die suprafluide Phase von <math>^{4}He</math>
Die suprafluide Phase von <math>^{4}He</math>
bei tiefen Temperaturen ähnelt einer 2- komponentigen Flüssigkeit aus normaler und kondensierter Komponente !
bei tiefen Temperaturen ähnelt einer 2- komponentigen Flüssigkeit aus normaler und kondensierter Komponente!

Latest revision as of 17:26, 27 September 2010


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=5|Abschnitt=3}} Kategorie:Thermodynamik __SHOWFACTBOX__



Rechnung geht analog zum Fermigas, nur dass die Besetzungszahlen Nj bis unendlich laufen können:

Y=N1...Nl=0exp(βj=1l(NjEjμNj))=j=1l(Nj=0exp(β(NjEjμNj)))=j=1l(Nj=0tjNj)tj:=exp(β(Ejμ))Y=j=1l11tj=j=1lYj

Die geometrische Reihe konvergiert genau dann, wenn tj<1, also wenn Ej>μ

à Bose - Einstein- Kondensation erfolgt bereits, wenn Ej=µ!

Somit ergibt sich die Wahrscheinlichkeit, die Besetzungszahlen N1, N2,.... der Einteilchenzustände E1, E2,.... zu finden:

P(N1,N2,...)=Y1exp(β(NjEjμNj))=j=1l(1tj)tjNj=j=1lp(Nj)(separiert)p(Nj)=(1tj)tjNj=(1exp(β(μEj)))exp(β(NjEjμNj))1exp(β(μEj)):=eΨjp(Nj)=eΨjexp(β(NjEjμNj))


Mittlere Besetzungszahl im Zustand Ej:

Nj=Ψjα=1βμlnYj=1βμln(1tj)=tj1tj=1tj11Nj=1exp(β(Ejμ))1=1exp((Ejμ)kT)1


Bose- Verteilung[edit | edit source]

Die Bose- Verteilung folgt auch explizit aus

Nj=Nj=0Njp(Nj)=Nj=0Nj(1tj)tjNj=(1tj)tjddtjNj=0tjNj=(1tj)tjddtj(11tj)=(1tj)tj(1(1tj)2)=tj(1tj)



Die Verteilung divergiert für Ej → µ. Das heißt: Die Zustandssumme Yj divergiert für Ej→µ

Vergleich aller drei Verteilungen:

Nj=1exp((Ejμ)kT)k{k=1k=0k=1


mit k=-1 → Fermi - Dirac- Statistik k=0 → Maxwell- Boltzmann k= + 1 → Bose - Einstein!



Übergang zum Quasikontinuum der Zustände: E=p22m

Fugazität: ξ=eβμ

lnY=j=1llnYj=jln(1ζeβEj)(2s+1)4πVh30dpp2ln(1ζeβp22m)=(2s+1)4πVh3[p33ln(1ζeβp22m)00dpp33βpmζeβp22m(1ζeβp22m)]p33ln(1ζeβp22m)0=0lnY=23β(2s+1)4πVh30dpp2βp22m(1ζeβp22m1)=23β(2s+1)Vh30dp4πp2N(p)E(p)lnY=23β(2s+1)Vh30dp4πp2N(p)E(p)=23βU

somit folgt:

pV=kTlnY=23U

also identisch zum fermigas! (S. 131)

Verdünntes Bosegas[edit | edit source]

(quasiklassischer, nicht entarteter Grenzfall)

Nebenbemerkung: Entartetetes Bosegas hoher Dichte kann nicht wie im Fermifall behandelt werden, da die Zustandssumme für Ej < µ divergiert!

Entwicklung nach Potenzen von

ξ=eμkT<<1

also:

μ<0


Gesamte Teilchenzahl:



N¯=jNj(2s+1)4πVh30dpp21exp((Ejμ)kT)1=(2s+1)4πVh30dpp21exp((p22mμ)kT)1p22mkT=yN¯=jNj(2s+1)4πVh30dpp21exp((p22mμ)kT)1=(2s+1)24πVh3(2mkT)320dyy12ξ1exp(y)1=(2s+1)24πVh3(2mkT)320dyy12ξey1ξey0dyy12ξey1ξeyξ0dyy12ey+ξ20dyy12e2y+....0dyy12ey=12π0dyy12e2y=1252πN¯(2s+1)44Vh3(2πmkT)32[ξ+1232ξ2]λ:=(h22πmkT)12=(2s+1NC)13N¯(2s+1)Vλ3ξ[1+1232ξ]=(2s+1)Vλ3eμkT[1+1232eμkT]

Wobei wieder die thermische Wellenlänge eingesetzt wurde. Auch hier:


ΔN¯=(2s+1)Vλ3eμkT1232eμkT
als Quantenkorrektur


Elimination von μ durch N¯

0. Näherung:

N¯=(2s+1)Vλ3eμkT

1. Näherung:

N¯=(2s+1)Vλ3eμkT[1+1232N¯λ3V(2s+1)]eμkTN¯λ3V(2s+1)[11232N¯λ3V(2s+1)]


Innere Energie:

U=(2s+1)4πVh30dpp2p22mexp((p22mμ)kT)1p22mkT=yU=(2s+1)24πVh3(2mkT)32kT0dyy32ξey1ξey0dyy32ξey1ξeyξ0dyy32ey+ξ20dyy12e2y+....0dyy32ey=34π0dyy32e2y=125234πU32kTV(2s+1)h3(2πmkT)32[ξ+1252ξ2]λ:=(h22πmkT)12=(2s+1NC)13U32(2s+1)VkTλ3ξ[1+1252ξ]=32(2s+1)kTVλ3eμkT[1+1252eμkT]

Also folgt als kalorische Zustandsgleichung:

U32(2s+1)VkTλ3ξ[1+1252ξ]=32(2s+1)kTVλ3eμkT[1+1252eμkT]=U32kTN¯[11252λ3V(2s+1)N¯]

Mit der Quantenkorrektur



ΔU32kTN¯1252λ3V(2s+1)N¯


thermische Zustandsgleichung

pV=23U=kTN¯[11252λ3V(2s+1)N¯]

Hier wird der Druck um die Quantenkorrektur

ΔpV=kTN¯1252λ3V(2s+1)N¯
verringert.

Dies ist die sogenannte Bose- Anziehung! → Bildung von Bose - Einstein- Kondensaten!

Bose- Einstein- Kondensation[edit | edit source]

Grundzustand des Bosegases: Eo=0 (Verschiebung der Achse geeignet)

Somit:

N0=1ξ11=ξ1ξξ=eβμ

Fugazität

Die mittlere Besetzungszahl dieses Quantenzustandes kann makroskopisch groß werden für ξ1

N0N¯

(alle Teilchen kondensieren im grundzustand)

Allgemein:

N¯=N0+N´N´=j>0Nj

1) Normale Phase:

ξ=eβμ<<1
N0
ist vernachlässigbar! → verdünntes Bosegas, siehe oben, S. 140 ff.

2) kondensierte Phase

ξ1
N´=j>01eβEj1<<N¯

unabhängig von ξ=eβμ!

Kontinuierlicher Fall:


N´V(2s+1)2πh3(2mkT)320dyy12ey1(2s+1)(2πmkTh2)322π0dyeyy12

Vergl. S. 141

N´V(2s+1)2πh3(2mkT)320dyy12ey1(2s+1)(2πmkTh2)322π0dyeyy122π0dyeyy12=1(2πmkTh2)32=λ3

Dabei ist dies der nicht kondensierte Anteil, eine normale Komponente, die sich wie verdünntes Bosegas verhält!

N´V=(2s+1)λ3~T32N´N¯=(TTC)32


Die kritische Temperatur ist definiert durch
VN¯(2s+1)λ(TC)3=!=1

{{#set:Definition=kritische Temperatur|Index=kritische Temperatur}}


Somit ergibt sich der Bruchteil der Kondensierten Teilchen:

N0N¯=1(TTC)32fu¨rT<TCN0N¯=0fu¨rT>TC


Das markierte Gebiet ist das Gebiet der Bose- Einstein-Kondensation! Bei zweikomponentigen Gasen liegt eine normale und ein kondensierte Komponente vor. Dann wird der Druck nur durch die normale Komponente alleine bestimmt! Vergleiche dazu auch: Dampfdruck über einer Flüssigkeit!

Phasenübegang bei TC: normale Phase - >Kondensierte Phase Vorgang der Bose- Einstein- Kondensation è ein makroskopisches Quantenphänomen!

Anwendung:

Die suprafluide Phase von 4He bei tiefen Temperaturen ähnelt einer 2- komponentigen Flüssigkeit aus normaler und kondensierter Komponente!