Gleichgewichtsbedingungen: Difference between revisions

From testwiki
Jump to navigation Jump to search
*>SchuBot
m Interpunktion, replaced: ! → ! (40), ( → ( (21)
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
<noinclude>{{Scripthinweis|Thermodynamik|3|5}}</noinclude>
<noinclude>{{Scripthinweis|Thermodynamik|3|5}}</noinclude>


Aus  <math>\Lambda \ge 0</math>
Aus  <math>\Lambda \ge 0</math> folgen Bedingungen für das thermodynamische Gleichgewicht <math>\Lambda =0</math> unter verschiedenen Einschränkungen an die Abweichungen von <math>\Sigma </math> vom Gleichgewicht:
 
folgen Bedingungen für das thermodynamische Gleichgewicht <math>\Lambda =0</math>
 
unter verschiedenen Einschränkungen an die Abweichungen von <math>\Sigma </math>
 
vom Gleichgewicht:


'''Allgemein'''
'''Allgemein'''
Line 17: Line 11:
:<math>{{\rho }^{0}}=\exp \left[ {{\Psi }^{0}}-{{\lambda }_{\nu }}^{0}{{M}^{\nu }} \right]</math>
:<math>{{\rho }^{0}}=\exp \left[ {{\Psi }^{0}}-{{\lambda }_{\nu }}^{0}{{M}^{\nu }} \right]</math>


====einfaches thermisches System:====
==einfaches thermisches System:==


:<math>\Lambda =kTK\left( \rho ,{{\rho }^{0}} \right)=U-{{U}^{0}}+{{p}^{0}}\left( V-{{V}^{0}} \right)\acute{\ }-{{\mu }_{\alpha }}^{0}\left( {{N}^{\alpha }}-{{N}^{\alpha 0}} \right)-{{T}^{0}}\left( S-{{S}^{0}} \right)\ge 0</math>
:<math>\Lambda =kTK\left( \rho ,{{\rho }^{0}} \right)=U-{{U}^{0}}+{{p}^{0}}\left( V-{{V}^{0}} \right)\acute{\ }-{{\mu }_{\alpha }}^{0}\left( {{N}^{\alpha }}-{{N}^{\alpha 0}} \right)-{{T}^{0}}\left( S-{{S}^{0}} \right)\ge 0</math>


# <u>'''isoliertes System'''</u>
U= const.


V= const.
=== isoliertes System ===
:U= const.


:<math>{{N}^{\alpha }}=</math>
:V= const.


const.
:<math>{{N}^{\alpha }}=</math>const.


:<math>\Rightarrow \left( S-{{S}^{0}} \right)\le 0</math>
:<math>\Rightarrow \left( S-{{S}^{0}} \right)\le 0</math>


* S maximal im Gleichgewicht!
* S maximal im Gleichgewicht!
* isolierte Systeme erreichen ihr Gleichgewicht mit einem Maximum der Entropie!
* {{FB|isolierte Systeme}} erreichen ihr Gleichgewicht mit einem Maximum der Entropie!
 
# <u>'''isentropisch - isochores  System'''</u>


S= const.
===isentropisch - isochores  System===


V= const.
:S= const.


:<math>{{N}^{\alpha }}=</math>
:V= const.


const.
:<math>{{N}^{\alpha }}=</math>const.


:<math>\Rightarrow \left( U-{{U}^{0}} \right)\ge 0</math>
:<math>\Rightarrow \left( U-{{U}^{0}} \right)\ge 0</math>


* U minimal im Gleichgewicht!
* U minimal im Gleichgewicht!
* <u>'''isentropisch - isochore'''</u> Systeme erreichen ihr Gleichgewicht mit einem Minimum der inneren Energie!
* {{FB|isentropisch - isochore}} Systeme erreichen ihr Gleichgewicht mit einem Minimum der inneren Energie!
 
# <u>'''isotherm - isochores  System'''</u>


T= const.
===isotherm - isochores  System===


V= const.
:T= const.


:<math>{{N}^{\alpha }}=</math>
:V= const.


const.
:<math>{{N}^{\alpha }}=</math> const.


:<math>\Lambda =\left( U-TS \right)-\left( {{U}^{0}}-{{T}^{0}}{{S}^{0}} \right)+S\left( T-{{T}^{0}} \right)+{{p}^{0}}\left( V-{{V}^{0}} \right)\acute{\ }-{{\mu }_{\alpha }}^{0}\left( {{N}^{\alpha }}-{{N}^{\alpha 0}} \right)\ge 0</math> mit <math>\begin{align}
:<math>\Lambda =\left( U-TS \right)-\left( {{U}^{0}}-{{T}^{0}}{{S}^{0}} \right)+S\left( T-{{T}^{0}} \right)+{{p}^{0}}\left( V-{{V}^{0}} \right)\acute{\ }-{{\mu }_{\alpha }}^{0}\left( {{N}^{\alpha }}-{{N}^{\alpha 0}} \right)\ge 0</math> mit <math>\begin{align}
Line 74: Line 62:


* F minimal im Gleichgewicht!
* F minimal im Gleichgewicht!
* <u>'''isotherm - isochore'''</u> Systeme erreichen ihr Gleichgewicht mit einem Minimum der freien Energie!
* {{FB|isotherm - isochore}} Systeme erreichen ihr Gleichgewicht mit einem Minimum der freien Energie!
 
# <u>'''isotherm - isobares  System'''</u>


T= const.
===isotherm - isobares  System===


p= const.
:T= const.


:<math>{{N}^{\alpha }}=</math>
:p= const.


const.
:<math>{{N}^{\alpha }}=</math>const.


:<math>\Lambda =\left( U-TS+pV \right)-\left( {{U}^{0}}-{{T}^{0}}{{S}^{0}}+{{p}^{0}}{{V}^{0}} \right)-V\left( p-{{p}^{0}} \right)+S\left( T-{{T}^{0}} \right)\acute{\ }-{{\mu }_{\alpha }}^{0}\left( {{N}^{\alpha }}-{{N}^{\alpha 0}} \right)\ge 0</math> mit <math>\begin{align}
:<math>\Lambda =\left( U-TS+pV \right)-\left( {{U}^{0}}-{{T}^{0}}{{S}^{0}}+{{p}^{0}}{{V}^{0}} \right)-V\left( p-{{p}^{0}} \right)+S\left( T-{{T}^{0}} \right)\acute{\ }-{{\mu }_{\alpha }}^{0}\left( {{N}^{\alpha }}-{{N}^{\alpha 0}} \right)\ge 0</math> mit <math>\begin{align}
Line 99: Line 85:


* G minimal im Gleichgewicht!
* G minimal im Gleichgewicht!
* <u>'''isotherm - isobare'''</u> Systeme erreichen ihr Gleichgewicht mit einem Minimum der Gibb´schen freien Energie !
* {{FB|isotherm - isobare}} Systeme erreichen ihr Gleichgewicht mit einem Minimum der Gibb´schen freien Energie !


# <u>'''isentropisch - isobares  System'''</u>
===isentropisch - isobares  System===


S= const.
:S= const.


p= const.
:p= const.


:<math>{{N}^{\alpha }}=</math>
:<math>{{N}^{\alpha }}=</math>const.
 
const.


:<math>\Lambda =\left( U+pV \right)-\left( {{U}^{0}}+{{p}^{0}}{{V}^{0}} \right)-V\left( p-{{p}^{0}} \right)+{{T}^{0}}\left( S-{{S}^{0}} \right)\acute{\ }-{{\mu }_{\alpha }}^{0}\left( {{N}^{\alpha }}-{{N}^{\alpha 0}} \right)\ge 0</math> mit <math>\begin{align}
:<math>\Lambda =\left( U+pV \right)-\left( {{U}^{0}}+{{p}^{0}}{{V}^{0}} \right)-V\left( p-{{p}^{0}} \right)+{{T}^{0}}\left( S-{{S}^{0}} \right)\acute{\ }-{{\mu }_{\alpha }}^{0}\left( {{N}^{\alpha }}-{{N}^{\alpha 0}} \right)\ge 0</math> mit <math>\begin{align}
Line 124: Line 108:


* H minimal im Gleichgewicht!
* H minimal im Gleichgewicht!
* <u>'''isentropisch - isobare'''</u> Systeme erreichen ihr Gleichgewicht mit einem Minimum der Enthalpie H
* {{FB|isentropisch - isobare}} Systeme erreichen ihr Gleichgewicht mit einem Minimum der Enthalpie H
 
# <u>'''isotherm- isochores  System mit festem chemischen Potenzial'''</u>


T= const.
=== isotherm- isochores  System mit festem chemischen Potenzial===


V= const.
:T= const.


:<math>\mu =</math>
:V= const.


const.
:<math>\mu =</math>const.


:<math>\Lambda =\left( U-TS-\mu N \right)-\left( {{U}^{0}}-{{T}^{0}}{{S}^{0}}-{{\mu }^{0}}{{N}^{0}} \right)-{{p}^{0}}\left( V-{{V}^{0}} \right)+S\left( T-{{T}^{0}} \right)\acute{\ }-N\left( \mu -{{\mu }^{0}} \right)\ge 0</math> mit <math>\begin{align}
:<math>\Lambda =\left( U-TS-\mu N \right)-\left( {{U}^{0}}-{{T}^{0}}{{S}^{0}}-{{\mu }^{0}}{{N}^{0}} \right)-{{p}^{0}}\left( V-{{V}^{0}} \right)+S\left( T-{{T}^{0}} \right)\acute{\ }-N\left( \mu -{{\mu }^{0}} \right)\ge 0</math> mit <math>\begin{align}
Line 150: Line 132:
* J minimal im Gleichgewicht!
* J minimal im Gleichgewicht!


* <u>'''isotherm- isochore '''</u>Systeme erreichen ihr Gleichgewicht mit einem Minimum des großkanonischen Potenzials J
* {{FB|isotherm- isochore}} Systeme erreichen ihr Gleichgewicht mit einem Minimum des großkanonischen Potenzials J


====Anwendungsbeispiele====
==Anwendungsbeispiele==


# <u>'''Dampfdruck'''</u>
# <u>'''Dampfdruck'''</u>
Line 251: Line 233:
Dampfdruck eines idealen Gases (q>0, falls Wärme dem System zur verdampfung zugeführt wird!!)
Dampfdruck eines idealen Gases (q>0, falls Wärme dem System zur verdampfung zugeführt wird!!)


====b)  Dampfdruck von Tröpfchen!====
===b)  Dampfdruck von Tröpfchen!===


Bisher: ebene Phasengrenzfläche
Bisher: ebene Phasengrenzfläche
Line 324: Line 306:
ein kleiner Luftballon bläst einen größeren auf!, p1 > p2
ein kleiner Luftballon bläst einen größeren auf!, p1 > p2


'''Nebenbemerkung'''
{{Bem|'''Nebenbemerkung'''
 
Der intensive Parameter p ist im Gleichgewicht zwischen Tröpfchen und Dampf nicht gleich!, da p und Oberflächenspannung <math>\sigma </math>


nicht unabhängig sind!
Der intensive Parameter p ist im Gleichgewicht zwischen Tröpfchen und Dampf '''nicht gleich''', da p und Oberflächenspannung <math>\sigma </math> nicht unabhängig sind!}}


Wir haben bisher den Druck im INNEREN eines Tröpfchens ausgerechnet, suchen jedoch den Dampfdruck der Tröpfchensuppe :
Wir haben bisher den Druck im '''inneren''' eines Tröpfchens ausgerechnet, suchen jedoch den Dampfdruck der Tröpfchensuppe :


P(T,r):
P(T,r):
Line 338: Line 318:
dabei sind jetzt p, T vorgegeben (statt V und T):
dabei sind jetzt p, T vorgegeben (statt V und T):


:<math>dG=\left( g\acute{\ }-g\acute{\ }\acute{\ } \right)dN\acute{\ }=!=0</math>
:<math>dG=\left( g\acute{\ }-g\acute{\ }\acute{\ } \right)dN\acute{\ }=!=0</math>, da G = minimal!
,
da G = minimal!


:<math>\Rightarrow g\acute{\ }\left( T,p\acute{\ } \right)=g\acute{\ }\acute{\ }\left( T,p\acute{\ }\acute{\ } \right)</math> mit <math>p\acute{\ }=\left( P(T,r)+\frac{2}{r}\sigma  \right)</math>
:<math>\Rightarrow g\acute{\ }\left( T,p\acute{\ } \right)=g\acute{\ }\acute{\ }\left( T,p\acute{\ }\acute{\ } \right)</math> mit <math>p\acute{\ }=\left( P(T,r)+\frac{2}{r}\sigma  \right)</math>
Line 366: Line 344:
Das heißt: Für vorgegebenen Außendruck Po existiert ein Radius ro, so dass für
Das heißt: Für vorgegebenen Außendruck Po existiert ein Radius ro, so dass für


r>ro  das Tröpfchen anwächst (Kondensation)
r>ro  das Tröpfchen anwächst ({{FB|Kondensation}})


r<ro das Tröpfchen kleiner wird (evaporiert)
r<ro das Tröpfchen kleiner wird ({{FB|evaporiert}})


Dabei: <math>{{r}_{0}}=\frac{2\sigma v\acute{\ }}{RT\ln \frac{{{P}_{0}}}{{{P}_{\infty }}}}</math>
Dabei: <math>{{r}_{0}}=\frac{2\sigma v\acute{\ }}{RT\ln \frac{{{P}_{0}}}{{{P}_{\infty }}}}</math>
Line 374: Line 352:
ist der zum Außendruck Po gehörende KRITISCHE TRÖPFCHENRADIUS  (instabil)
ist der zum Außendruck Po gehörende KRITISCHE TRÖPFCHENRADIUS  (instabil)


<u>'''Ostwald- reifung'''</u>
===Ostwald- reifung===


Stabiles Tröpfchen durch globale Einschränkungen (Gesamtzahl der Moleküle)
Stabiles Tröpfchen durch globale Einschränkungen (Gesamtzahl der Moleküle)
Line 418: Line 396:
:<math>d{{N}^{a}}=\sum\limits_{b=1}^{Ph}{{}}d{{N}_{b}}^{a}=!=0</math>
:<math>d{{N}^{a}}=\sum\limits_{b=1}^{Ph}{{}}d{{N}_{b}}^{a}=!=0</math>


mit Lagrange- Multiplikator <math>{{\tau }^{a}}</math>
mit Lagrange- Multiplikator <math>{{\tau }^{a}}</math>:
 
:


:<math>\begin{align}
:<math>\begin{align}
Line 440: Line 416:
Gleichungen für jede Komponente a!
Gleichungen für jede Komponente a!


Dies entspricht insgesamt <math>K\left( Ph-1 \right)</math>
Dies entspricht insgesamt <math>K\left( Ph-1 \right)</math> Gleichungen!
 
Gleichungen!


In einer Phase gibt es K-1 relative Konzentrationen der Komponenten!
In einer Phase gibt es K-1 relative Konzentrationen der Komponenten!


insgesamt also <math>Ph\left( K-1 \right)</math>
insgesamt also <math>Ph\left( K-1 \right)</math> relative Konzentrationen in allen Phasen!
 
relative Konzentrationen in allen Phasen!


Das heißt: Die Zahl der unabhängigen Variablen  <math>T,p,..</math>
Das heißt: Die Zahl der unabhängigen Variablen  <math>T,p,..</math>


als unabhängige relative Konzentrationen!,
als {{FB|unabhängige relative Konzentrationen}},entsprechend der Zahl der thermodynamischen Freiheitsgrade beträgt:
 
entsprechend der Zahl der thermodynamischen Freiheitsgrade beträgt:


:<math>f=2+Ph\left( K-1 \right)-k(Ph-1)=K-Ph+2</math>
:<math>f=2+Ph\left( K-1 \right)-k(Ph-1)=K-Ph+2</math>
Line 462: Line 432:
:<math>f=K-Ph+2</math>
:<math>f=K-Ph+2</math>


'''Beispiele:'''
{{Beispiel|1='''Beispiele:'''


# <u>Gas einer reinen Substanz:</u>
# <u>Gas einer reinen Substanz:</u>
Line 479: Line 449:
* f=1 → T kann beeispielsweise beliebig gewählt werden, P(T) fest, folgt Dampfdruckkurve
* f=1 → T kann beeispielsweise beliebig gewählt werden, P(T) fest, folgt Dampfdruckkurve


# Gas, Flüssigkeit und feste Phase in Koexistenz → f=0, Tripelpunkt T!
# Gas, Flüssigkeit und feste Phase in Koexistenz → f=0, Tripelpunkt T!}}

Latest revision as of 13:02, 19 September 2010


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=3|Abschnitt=5}} Kategorie:Thermodynamik __SHOWFACTBOX__


Aus Λ0 folgen Bedingungen für das thermodynamische Gleichgewicht Λ=0 unter verschiedenen Einschränkungen an die Abweichungen von Σ vom Gleichgewicht:

Allgemein

K(ρ,ρ0)=tr[ρlnρρ0lnρ0(ρρ0)lnρ0]=II0+λν0(MνMν0)

für

ρ0=exp[Ψ0λν0Mν]

einfaches thermisches System:[edit | edit source]

Λ=kTK(ρ,ρ0)=UU0+p0(VV0)´μα0(NαNα0)T0(SS0)0


isoliertes System[edit | edit source]

U= const.
V= const.
Nα=const.
(SS0)0
  • S maximal im Gleichgewicht!
  • isolierte Systeme{{#set:Fachbegriff=isolierte Systeme|Index=isolierte Systeme}} erreichen ihr Gleichgewicht mit einem Maximum der Entropie!

isentropisch - isochores System[edit | edit source]

S= const.
V= const.
Nα=const.
(UU0)0
  • U minimal im Gleichgewicht!
  • isentropisch - isochore{{#set:Fachbegriff=isentropisch - isochore|Index=isentropisch - isochore}} Systeme erreichen ihr Gleichgewicht mit einem Minimum der inneren Energie!

isotherm - isochores System[edit | edit source]

T= const.
V= const.
Nα= const.
Λ=(UTS)(U0T0S0)+S(TT0)+p0(VV0)´μα0(NαNα0)0 mit (UTS)=F(U0T0S0)=F0S(TT0)=0=p0(VV0)´=μα0(NαNα0)
(FF0)0
  • F minimal im Gleichgewicht!
  • isotherm - isochore{{#set:Fachbegriff=isotherm - isochore|Index=isotherm - isochore}} Systeme erreichen ihr Gleichgewicht mit einem Minimum der freien Energie!

isotherm - isobares System[edit | edit source]

T= const.
p= const.
Nα=const.
Λ=(UTS+pV)(U0T0S0+p0V0)V(pp0)+S(TT0)´μα0(NαNα0)0 mit (UTS+pV)=G(U0T0S0+p0V0)=G0S(TT0)=0=V(pp0)´=μα0(NαNα0)
(GG0)0
  • G minimal im Gleichgewicht!
  • isotherm - isobare{{#set:Fachbegriff=isotherm - isobare|Index=isotherm - isobare}} Systeme erreichen ihr Gleichgewicht mit einem Minimum der Gibb´schen freien Energie !

isentropisch - isobares System[edit | edit source]

S= const.
p= const.
Nα=const.
Λ=(U+pV)(U0+p0V0)V(pp0)+T0(SS0)´μα0(NαNα0)0 mit (U+pV)=H(U0+p0V0)=H0T0(SS0)=0=V(pp0)´=μα0(NαNα0)
(HH0)0
  • H minimal im Gleichgewicht!
  • isentropisch - isobare{{#set:Fachbegriff=isentropisch - isobare|Index=isentropisch - isobare}} Systeme erreichen ihr Gleichgewicht mit einem Minimum der Enthalpie H

isotherm- isochores System mit festem chemischen Potenzial[edit | edit source]

T= const.
V= const.
μ=const.
Λ=(UTSμN)(U0T0S0μ0N0)p0(VV0)+S(TT0)´N(μμ0)0 mit (UTSμN)=J(U0T0S0μ0N0)=J0S(TT0)=0=p0(VV0)´=N(μμ0)
(JJ0)0
  • J minimal im Gleichgewicht!
  • isotherm- isochore{{#set:Fachbegriff=isotherm- isochore|Index=isotherm- isochore}} Systeme erreichen ihr Gleichgewicht mit einem Minimum des großkanonischen Potenzials J

Anwendungsbeispiele[edit | edit source]

  1. Dampfdruck

Gleichgewicht zweier Phasen der selben Substanz (Dampf und Flüssigkeit)

N´ mol Flüssigkeit und N´´ mol Gas

Gleichgewichtsbedingung (G minimal!)

  • G(T,p) minimal im Gleichgewicht!
  • isotherm - isobare Systeme erreichen ihr Gleichgewicht mit einem Minimum der Gibb´schen freien Energie !

Gegeben: T

Gesucht: Bei welchem Dampfdruck herrscht Gleichgewicht, also Koexistenz zwischen Gas und Flüssigkeit ?

  • Dampfdruck p = p(T)!

gesamte Gibbsche freie Energie:

G=N´g´+N´´g´´

mit g= molare Gibbsche freie Energie : G (T,p,N) = g(T,p)N = µ (chemisches Potenzial (s.o.))

Zulässige Abweichungen vom Gleichgewicht:

ΔN´+ΔN´´=0

durch Verdampfung bei konstantem Dampfdruck

ΔG=ΔN´g´+ΔN´´g´´=(g´g´´)ΔN´=!=0

da ja im Gleichgewicht G=

minimal!!

Also:

g´(T,P(T))=!=g´´(T,P(T)) mit (gT)p=s

(molare Entropie)

und

(gp)T=v

(Molvolumen)

folgt:

dg=sdT+vdp

weiter:

g´=g´´(s´´s´)dT+(v´´v´)dp=0

Also haben wir für ein isothermes, isobares System:

p=P(T)dPdT=s´´s´v´´v´

(Clausius - Clapeyron- Gleichung)

oder:

dPdT=q(v´´v´)T

mit der molaren Verdampfungswärme q:=(s´´s´)T

Anwendung auf ein ideales Gas: (weit weg vom kritischen Punkt!)

v´´=RTP(T)>>v´

(Flüssigkeiten)

dPdT=qRT2P
dPP=qRT2dTP(T)=Ce(qRT)

Dampfdruck eines idealen Gases (q>0, falls Wärme dem System zur verdampfung zugeführt wird!!)

b) Dampfdruck von Tröpfchen![edit | edit source]

Bisher: ebene Phasengrenzfläche

jetzt: gekrümmte Phasengrenzfläche → zusätzliche Arbeit δW=σdω

bei Vergrößerung der Oberfläche ω

über die Oberflächenspannung σ

Kugelförmiges Tröpfchen:

dω=d(4πr2)=8πrdrdV´=4πr2drdω=2rdV´

Also ist die geleistete Arbeit bei der Volumenänderung der Flüssigkeit (dV´):

=σ2rdV´

und insgesamt mit der Druckarbeit:

δW=p´dV´p´´dV´´+σ2rdV´


Σ

sei der Dampf und die Tröpfchen.

Diese seien in ein Gefäß mit festem Volumen V eingeschlossen.

Isochorer / isothermer Prozess → Minimum der freien Energie F:

F(T,V)= Minimal im Gleichgewicht!

dV´+dV´´=0dF=d(UTS)=dUTdS

(zulässige Abweichung vom Gleichgewicht = Volumenerhaltung!)

mit Gibbs Fundamentalrelation:

dF=d(UTS)=dUTdS=!=δW=(p´´p´+2rσ)dV´=!=0

F im Minimum!!!

Also:

p´=(p´´+2rσ)

Der Druck im Inneren des Tröpfchens p´ ist höher als außen im Dampf p´´=P(T)

und zwar mit dem Inversen des Radius!

Kleinere Tröpfchen haben also höheren Innendruck als Größere!

Also:


ein kleiner Luftballon bläst einen größeren auf!, p1 > p2


left|50px Nebenbemerkung

Der intensive Parameter p ist im Gleichgewicht zwischen Tröpfchen und Dampf nicht gleich, da p und Oberflächenspannung σ nicht unabhängig sind!


Wir haben bisher den Druck im inneren eines Tröpfchens ausgerechnet, suchen jedoch den Dampfdruck der Tröpfchensuppe :

P(T,r):

P(T,r)

dabei sind jetzt p, T vorgegeben (statt V und T):

dG=(g´g´´)dN´=!=0, da G = minimal!
g´(T,p´)=g´´(T,p´´) mit p´=(P(T,r)+2rσ)

Differenziation nach r bei festem T:

(g´(T,p´)p´)T[(Pr)T2r2σ]=(g´´p´´)T(Pr)T(g´´p´´)=v´´(g´(T,p´)p´)=v´(Pr)T=2r2σv´v´´v´2r2σv´v´´=idGas=2σv´RTr2PlnPP=2σv´RTrP=P(T)exp2σv´RTr

Als Dampfdruck eines Tröpfchens (entsprechend der Gleichgewichtsbedingung)!

Das heißt: Für vorgegebenen Außendruck Po existiert ein Radius ro, so dass für

r>ro das Tröpfchen anwächst (Kondensation{{#set:Fachbegriff=Kondensation|Index=Kondensation}})

r<ro das Tröpfchen kleiner wird (evaporiert{{#set:Fachbegriff=evaporiert|Index=evaporiert}})

Dabei: r0=2σv´RTlnP0P

ist der zum Außendruck Po gehörende KRITISCHE TRÖPFCHENRADIUS (instabil)

Ostwald- reifung[edit | edit source]

Stabiles Tröpfchen durch globale Einschränkungen (Gesamtzahl der Moleküle)

Bei Konkurrenz vieler verschiedener großer Tröpfchen überlebt im Laufe der zeit nur das anfänglich größte (Selektionsmechanismus)

(wird auch in Systemen fern vom thermodynamischen Gleichgewicht beobachtet → z.B. Domänen, Stromfilamente)

Übung

Dampfdruckerniedrigung

  • Siedepunktserhöhung, Gefrierpunktserniedrigung durch Mischung!
  1. Gibbb´sche Phasenregel

Man betrachte ein System, das aus K chemischen Komponenten in Ph Phasen zusammengesetzt ist:

Komponenten: a = 1,.., K

Phasen: b= 1,...,Ph

(fest, flüssig, gasf..)

Annahme:

Keine chemischen Reaktionen:

T,p, Na(a=1,..,K)

fest!

Gleichgewicht

dG=a=1Kb=1PhμbadNba=!=0

wegen:

G(T,p)=min.

Nebenbedingung

dNa=b=1PhdNba=!=0

mit Lagrange- Multiplikator τa:

a=1Kb=1Ph(μbaτa)dNba=!=0μba=τa

in jeder Phase gleich

μ1a=μ2a=...=μPha

Also

Ph1

Gleichungen für jede Komponente a!

Dies entspricht insgesamt K(Ph1) Gleichungen!

In einer Phase gibt es K-1 relative Konzentrationen der Komponenten!

insgesamt also Ph(K1) relative Konzentrationen in allen Phasen!

Das heißt: Die Zahl der unabhängigen Variablen T,p,..

als unabhängige relative Konzentrationen{{#set:Fachbegriff=unabhängige relative Konzentrationen|Index=unabhängige relative Konzentrationen}},entsprechend der Zahl der thermodynamischen Freiheitsgrade beträgt:

f=2+Ph(K1)k(Ph1)=KPh+2

Dies ist die Gibbsche Phasenregel:

f=KPh+2


Beispiele:
  1. Gas einer reinen Substanz:
K=Ph=1f=2
  • 2 thermodynamische Variablen können beliebig gewählt werden
  1. Gas und Flüssigkeit in Koexistenz
  • Ph =2
  • f=1 → T kann beeispielsweise beliebig gewählt werden, P(T) fest, folgt Dampfdruckkurve
  1. Gas, Flüssigkeit und feste Phase in Koexistenz → f=0, Tripelpunkt T!