Addition von Drehimpulsen: Difference between revisions

From testwiki
Jump to navigation Jump to search
*>SchuBot
Einrückungen Mathematik
*>SchuBot
m Interpunktion, replaced: ! → ! (4), ( → (
 
Line 23: Line 23:
\end{align}</math>
\end{align}</math>


Drehimpuls Vertauschungsrelationen !
Drehimpuls Vertauschungsrelationen!


:<math>\left[ {{{\hat{J}}}^{2}},{{{\hat{L}}}_{3}} \right]=\left[ {{{\hat{L}}}^{2}}+{{{\hat{\bar{S}}}}^{2}}+2\hat{\bar{L}}\cdot \hat{\bar{S}},{{{\hat{L}}}_{3}} \right]=2{{\hat{\bar{S}}}_{j}}\left[ {{{\hat{L}}}_{j}},{{{\hat{L}}}_{3}} \right]=2i\hbar \left( {{{\hat{S}}}_{2}}{{{\hat{L}}}_{1}}-{{{\hat{S}}}_{1}}{{{\hat{L}}}_{2}} \right)\ne 0</math>
:<math>\left[ {{{\hat{J}}}^{2}},{{{\hat{L}}}_{3}} \right]=\left[ {{{\hat{L}}}^{2}}+{{{\hat{\bar{S}}}}^{2}}+2\hat{\bar{L}}\cdot \hat{\bar{S}},{{{\hat{L}}}_{3}} \right]=2{{\hat{\bar{S}}}_{j}}\left[ {{{\hat{L}}}_{j}},{{{\hat{L}}}_{3}} \right]=2i\hbar \left( {{{\hat{S}}}_{2}}{{{\hat{L}}}_{1}}-{{{\hat{S}}}_{1}}{{{\hat{L}}}_{2}} \right)\ne 0</math>
Line 36: Line 36:


'''Ziel: Suche gemeinsame Eigenzustände zu '''<math>{{\hat{J}}^{2}}</math>
'''Ziel: Suche gemeinsame Eigenzustände zu '''<math>{{\hat{J}}^{2}}</math>
,
<math>{{\hat{J}}_{3}}</math>
,
<math>{{\hat{L}}^{2}},{{\hat{\bar{S}}}^{2}}</math>
.


,<math>{{\hat{J}}_{3}}</math>
,<math>{{\hat{L}}^{2}},{{\hat{\bar{S}}}^{2}}</math>
.


Dies muss möglich sein, da
Dies muss möglich sein, da
Line 85: Line 85:
\end{smallmatrix}}{{}}\left| lms{{m}_{s}} \right\rangle \left\langle  lms{{m}_{s}}  |  j{{m}_{j}}ls \right\rangle </math>
\end{smallmatrix}}{{}}\left| lms{{m}_{s}} \right\rangle \left\langle  lms{{m}_{s}}  |  j{{m}_{j}}ls \right\rangle </math>


Zu beachten ist: Es wird ausschließlich über die Komponenten der alten Basis summiert, die sich von der neuen Basis unterscheiden ( das heißt: Nur dieser Teil der Basis wird transformiert) !
Zu beachten ist: Es wird ausschließlich über die Komponenten der alten Basis summiert, die sich von der neuen Basis unterscheiden (das heißt: Nur dieser Teil der Basis wird transformiert)!


Dabei heißen die Entwicklungskoeffizienten der neuen Basis bezüglich der alten Basisvektoren, also die Koordinaten der neuen Basis in der alten Basis
Dabei heißen die Entwicklungskoeffizienten der neuen Basis bezüglich der alten Basisvektoren, also die Koordinaten der neuen Basis in der alten Basis


{{FB|Clebsch-Gordan-Koeffizienten}} !
{{FB|Clebsch-Gordan-Koeffizienten}}!


:<math>\left\langle  lms{{m}_{s}}  |  j{{m}_{j}}ls \right\rangle </math>
:<math>\left\langle  lms{{m}_{s}}  |  j{{m}_{j}}ls \right\rangle </math>
Line 96: Line 96:


{| class="wikitable" border="1"
{| class="wikitable" border="1"
|-
|-!
!<math>s=\frac{1}{2}</math> !!<math>{{m}_{s}}=\frac{1}{2}</math>!!<math>{{m}_{s}}=-\frac{1}{2}</math>
<math>s=\frac{1}{2}</math>!!<math>{{m}_{s}}=\frac{1}{2}</math>!!<math>{{m}_{s}}=-\frac{1}{2}</math>
|-
|-
|<math>j=l+\frac{1}{2}</math>||<math>{{\left( \frac{l+{{m}_{j}}+\frac{1}{2}}{2l+1} \right)}^{\frac{1}{2}}}</math>||<math>{{\left( \frac{l-{{m}_{j}}+\frac{1}{2}}{2l+1} \right)}^{\frac{1}{2}}}</math>
|<math>j=l+\frac{1}{2}</math>||<math>{{\left( \frac{l+{{m}_{j}}+\frac{1}{2}}{2l+1} \right)}^{\frac{1}{2}}}</math>||<math>{{\left( \frac{l-{{m}_{j}}+\frac{1}{2}}{2l+1} \right)}^{\frac{1}{2}}}</math>

Latest revision as of 00:34, 13 September 2010


{{#set:Urheber=Prof. Dr. E. Schöll, PhD|Inhaltstyp=Script|Kapitel=4|Abschnitt=4}} Kategorie:Quantenmechanik __SHOWFACTBOX__


Der Gesamtdrehimpuls kann folgendermaßen dargestellt werden:

Die Vertauschungsrelationen:

Beide Operatoren wirken in verschiedenen Räumen. Wäre der Operator nicht Null, so wären die zugehörigen Eigenzustände nicht separabel.

Drehimpuls Vertauschungsrelationen!

Ebenso:

Also:

Die Produktzustände sind Eigenzustände zu aber nicht zu , da bzw.

Ziel: Suche gemeinsame Eigenzustände zu , , .


Dies muss möglich sein, da

Die Eigenwertgleichungen lauten:

Durch Einschub eines Vollständigen Satzes orthonormierter Eigenfunktionen, durch Einschub eines Projektors auf diesen vollständigen atz, also durch Einschub einer "1" kann der neue Eigenzustand

bezüglich des alten Zustandes

entwickelt werden:

Zu beachten ist: Es wird ausschließlich über die Komponenten der alten Basis summiert, die sich von der neuen Basis unterscheiden (das heißt: Nur dieser Teil der Basis wird transformiert)!

Dabei heißen die Entwicklungskoeffizienten der neuen Basis bezüglich der alten Basisvektoren, also die Koordinaten der neuen Basis in der alten Basis

Clebsch-Gordan-Koeffizienten{{#set:Fachbegriff=Clebsch-Gordan-Koeffizienten|Index=Clebsch-Gordan-Koeffizienten}}!

Dabei gilt:

!!!!

Wobei: