Editing Weitere Eigenschaften der Dirac-Gleichung

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 1: Line 1:
<noinclude>{{ScriptProf|Kapitel=1|Abschnitt=6|Prof=Prof. Dr. T. Brandes|Thema=Quantenmechanik|Schreiber=Moritz Schubotz}}</noinclude>
<noinclude>{{ScriptProf|Kapitel=1|Abschnitt=6|Prof=Brandes|Thema=Quantenmechanik|Schreiber=Moritz Schubotz}}</noinclude>


Wir starten von
Wir starten von


{{NumBlk|:|<math>i{{\partial }_{t}}\Psi =\left( \underline{a}.\underline{\hat{p}}+\beta m \right)\Psi </math>|(1.45)|RawN=.}}
{{NumBlk|:| <math>i{{\partial }_{t}}\Psi =\left( \underline{a}.\underline{\hat{p}}+\beta m \right)\Psi </math>


# Kontinuitätsgleichung mit <math>{{\Psi }^{+}}</math>(1.45) und (1.45)+<math>\Psi </math>
|(1.45)|RawN=.}}


:<math>\begin{align}
*# Kontinuitätsgleichung mit <math>{{\Psi }^{+}}</math>(1.45) und (1.45)+<math>\Psi </math>
 
<math>\begin{align}


& \mathfrak{i} {{\Psi }^{+}}\dot{\Psi }\quad ={{\Psi }^{+}}\left( \underline{\alpha }.\hat{\underline{p}}+\beta m \right)\Psi  \\
& \mathfrak{i} {{\Psi }^{+}}\dot{\Psi }\quad ={{\Psi }^{+}}\left( \underline{\alpha }.\hat{\underline{p}}+\beta m \right)\Psi  \\
Line 23: Line 25:
\end{align}</math>
\end{align}</math>


:mit der {{FB|Wahrscheinlichkeitsdichte}} ρ und der {{FB|Wahrscheinlichkeitsstromdichte}} j<sub>k.</sub>
mit der Wahrscheinlichkeitsdichte{{FB|Wahrscheinlichkeitsdichte}} ρ und der Wahrscheinlichkeitsstromdichte{{FB|Wahrscheinlichkeitsstromdichte}} j<sub>k.</sub>


{{NumBlk|:|
{{NumBlk|:|


:<math>\begin{align}
<math>\begin{align}


& \rho :={{\Psi }^{+}}\Psi =\sum\limits_{k=1}^{4}{\Psi _{k}^{*}{{\Psi }_{k}}} \\
& \rho :={{\Psi }^{+}}\Psi =\sum\limits_{k=1}^{4}{\Psi _{k}^{*}{{\Psi }_{k}}} \\
Line 39: Line 41:
{{NumBlk|:|(Kontinuitätsgleichung)
{{NumBlk|:|(Kontinuitätsgleichung)


:<math>\Rightarrow {{\partial }_{t}}\rho +\underline{\nabla }\underline{j}=0</math>
<math>\Rightarrow {{\partial }_{t}}\rho +\underline{\nabla }\underline{j}=0</math>


: |(1.47)|RawN=.}}
: |(1.47)|RawN=.}}


:Die Wahrscheinlichkeitsdichte setzt sich aus den 4 Komponenten des Spinors <math>\Psi </math> zusammen.
Die Wahrscheinlichkeitsdichte setzt sich aus den 4 Komponenten des Spinors <math>\Psi </math>zusammen.


#<li value="2"> Lorentz-Invarianz</li>
*# Lorentz-Invarianz
Umdefinieren der Matrizen <math>{{\underline{\underline{\alpha }}}_{k}},\underline{\underline{\beta }}</math>als
Umdefinieren der Matrizen <math>{{\underline{\underline{\alpha }}}_{k}},\underline{\underline{\beta }}</math>als


{{NumBlk|:|
{{NumBlk|:|


:<math>{{\gamma }^{0}}:=\beta =\left( \begin{matrix}
<math>{{\gamma }^{0}}:=\beta =\left( \begin{matrix}


{\underline{\underline{1}}} & {\underline{\underline{0}}}  \\
{\underline{\underline{1}}} & {\underline{\underline{0}}}  \\
Line 62: Line 64:
-{{\sigma }_{k}} & 0  \\
-{{\sigma }_{k}} & 0  \\


\end{matrix} \right)</math> |(1.48)|RawN=.}}
\end{matrix} \right)</math>
 
: |(1.48)|RawN=.}}


{{NumBlk|:|
{{NumBlk|:|


:<math>\begin{align}
<math>\begin{align}


& {{\left( {{\gamma }^{0}} \right)}^{+}}={{\gamma }^{0}},{{\left( {{\gamma }^{0}} \right)}^{2}}=1 \\
& {{\left( {{\gamma }^{0}} \right)}^{+}}={{\gamma }^{0}},{{\left( {{\gamma }^{0}} \right)}^{2}}=1 \\
Line 80: Line 84:
(z.B. <math>{{\gamma }^{k}}{{\gamma }^{j}}+{{\gamma }^{j}}{{\gamma }^{k}}=\beta {{\alpha }_{k}}\beta {{\alpha }_{j}}+\beta {{\alpha }_{j}}\beta {{\alpha }_{k}}\underbrace{=}_{1.32}-{{\alpha }_{k}}{{\beta }^{2}}{{\alpha }_{j}}-{{\alpha }_{j}}{{\beta }^{2}}{{\alpha }_{k}}=-2{{\delta }_{jk}}</math>)
(z.B. <math>{{\gamma }^{k}}{{\gamma }^{j}}+{{\gamma }^{j}}{{\gamma }^{k}}=\beta {{\alpha }_{k}}\beta {{\alpha }_{j}}+\beta {{\alpha }_{j}}\beta {{\alpha }_{k}}\underbrace{=}_{1.32}-{{\alpha }_{k}}{{\beta }^{2}}{{\alpha }_{j}}-{{\alpha }_{j}}{{\beta }^{2}}{{\alpha }_{k}}=-2{{\delta }_{jk}}</math>)


 
<u>Relativistische Notation:</u>
== Relativistische Notation ==


kontravarianter Vierervektor{{FB|Vierervektor}} mit Index oben
kontravarianter Vierervektor{{FB|Vierervektor}} mit Index oben
Line 87: Line 90:
{{NumBlk|:|
{{NumBlk|:|


:<math>{{x}^{\mu }}\leftrightarrow \left( {{x}^{0}},{{x}^{1}},{{x}^{2}},{{x}^{3}} \right):=\left( ct,x,y,z \right)=\left( ct,\underline{x} \right)</math>
<math>{{x}^{\mu }}\leftrightarrow \left( {{x}^{0}},{{x}^{1}},{{x}^{2}},{{x}^{3}} \right):=\left( ct,x,y,z \right)=\left( ct,\underline{x} \right)</math>


: |(1.50)|RawN=.}}
: |(1.50)|RawN=.}}
Line 95: Line 98:
{{NumBlk|:|
{{NumBlk|:|


:<math>{{x}_{\mu }}=\left( {{x}_{0}},{{x}_{1}},{{x}_{2}},{{x}_{3}} \right):=\left( ct,-x,-y,-z \right)=\left( ct,-\underline{x} \right)</math>
<math>{{x}_{\mu }}=\left( {{x}_{0}},{{x}_{1}},{{x}_{2}},{{x}_{3}} \right):=\left( ct,-x,-y,-z \right)=\left( ct,-\underline{x} \right)</math>


: |(1.51)|RawN=.}}
: |(1.51)|RawN=.}}
Line 102: Line 105:
{{NumBlk|:|
{{NumBlk|:|


:<math>{{x}_{\mu }}{{x}^{\mu }}=\sum\limits_{\mu =0}^{4}{{{x}_{\mu }}{{x}^{\mu }}={{c}^{2}}{{t}^{2}}-{{{\underline{x}}}^{2}}}</math>
<math>{{x}_{\mu }}{{x}^{\mu }}=\sum\limits_{\mu =0}^{4}{{{x}_{\mu }}{{x}^{\mu }}={{c}^{2}}{{t}^{2}}-{{{\underline{x}}}^{2}}}</math>


: |(1.52)|RawN=.}}
: |(1.52)|RawN=.}}
Line 114: Line 117:
* Lorentz-Transformation wie in (1.11) (Bewegung in x-Richtung)
* Lorentz-Transformation wie in (1.11) (Bewegung in x-Richtung)
*  
*  
:<math>\begin{align}
<math>\begin{align}


& ct'=\gamma ct-\gamma \beta x \\
& ct'=\gamma ct-\gamma \beta x \\
Line 137: Line 140:


\end{matrix} \right)</math>.
\end{matrix} \right)</math>.
----


* Invarianz von <math>{{x}_{\mu }}{{x}^{\mu }}</math>unter Lorentz-Transformationen:
* Invarianz von <math>{{x}_{\mu }}{{x}^{\mu }}</math>unter Lorentz-Transformationen:
Line 149: Line 154:
{{NumBlk|:|
{{NumBlk|:|


:<math>\begin{align}
<math>\begin{align}


& {{\partial }^{\nu }}=\frac{\partial }{\partial {{x}_{\nu }}}\quad \text{kontravarianter Vierergradient} \\
& {{\partial }^{\nu }}=\frac{\partial }{\partial {{x}_{\nu }}}\quad \text{kontravarianter Vierergradient} \\
Line 161: Line 166:
Die Dirac-Gleichung folgt aus
Die Dirac-Gleichung folgt aus


:<math>\begin{align}
<math>\begin{align}


& \left( \mathfrak{i} {{\partial }_{t}}-\underline{\alpha }\frac{1}{\mathfrak{i} }\underline{\nabla }-\beta m \right)\Psi =0\quad |\centerdot \beta  \\
& \left( \mathfrak{i} {{\partial }_{t}}-\underline{\alpha }\frac{1}{\mathfrak{i} }\underline{\nabla }-\beta m \right)\Psi =0\quad |\centerdot \beta  \\
Line 169: Line 174:
\end{align}</math>
\end{align}</math>


{{NumBlk|:|{{FB|Dirac-Gleichung}}
{{NumBlk|:|Dirac-Gleichung{{FB|Dirac-Gleichung}}


:<math>\left( \mathfrak{i} {{\gamma }^{\mu }}{{\partial }_{\mu }}-m \right)\Psi =0</math>
<math>\left( \mathfrak{i} {{\gamma }^{\mu }}{{\partial }_{\mu }}-m \right)\Psi =0</math>


: |(1.56)|RawN=.|Border=1}}
: |(1.56)|RawN=.}}


* Relativistische Invarianz: Gleiche Form der Dirac-Gleichun in zwei System S,S‘ (die sich gleichförmig gegeneinander bewegen) aber nicht Invarianz der Dgl. gegenüber Lorentz-Transformationen
* Relativistische Invarianz: Gleiche Form der Dirac-Gleichun in zwei System S,S‘ (die sich gleichförmig gegeneinander bewegen) aber nicht Invarianz der Dgl. gegenüber Lorentz-Transformationen
Line 180: Line 185:
{{NumBlk|:|
{{NumBlk|:|


:<math>\left( \mathfrak{i} {{\gamma }^{\nu }}{{\partial }_{\nu }}-m \right)\Psi =0\ \left( \text{in S} \right)\quad \left( \mathfrak{i} \gamma {{'}^{\nu }}\partial {{'}_{\nu }}-m' \right)\Psi '=0\ \left( \text{in S }\!\!'\!\!\text{ } \right)</math>
<math>\left( \mathfrak{i} {{\gamma }^{\nu }}{{\partial }_{\nu }}-m \right)\Psi =0\ \left( \text{in S} \right)\quad \left( \mathfrak{i} \gamma {{'}^{\nu }}\partial {{'}_{\nu }}-m' \right)\Psi '=0\ \left( \text{in S }\!\!'\!\!\text{ } \right)</math>


: |(1.57)|RawN=.}}
: |(1.57)|RawN=.}}
Line 186: Line 191:
(Hier ohne Vektorpotential, mit Vektorpotential A analog, vgl. Rollnik II)
(Hier ohne Vektorpotential, mit Vektorpotential A analog, vgl. Rollnik II)


 
<u>''Lorentz''-Transformation</u>
== ''Lorentz''-Transformation ==


Koordinaten <math>x{{'}^{\mu }}={{L}^{\mu }}_{\nu }{{x}^{\nu }}</math>
Koordinaten <math>x{{'}^{\mu }}={{L}^{\mu }}_{\nu }{{x}^{\nu }}</math>
Line 193: Line 197:
Ableitung
Ableitung


:<math>\partial {{'}_{\mu }}=\frac{\partial }{\partial x{{'}^{\mu }}}=\frac{\partial x{{'}^{\nu }}}{\partial {{x}^{\mu }}}\frac{\partial }{\partial {{x}^{\nu }}}={{\left( {{L}^{-1}} \right)}^{\nu }}_{\mu }{{\partial }_{\nu }}</math>
<math>\partial {{'}_{\mu }}=\frac{\partial }{\partial x{{'}^{\mu }}}=\frac{\partial x{{'}^{\nu }}}{\partial {{x}^{\mu }}}\frac{\partial }{\partial {{x}^{\nu }}}={{\left( {{L}^{-1}} \right)}^{\nu }}_{\mu }{{\partial }_{\nu }}</math>


Wellenfunktion (4er Spinor) <math>\Psi '\left( x' \right)=\underbrace{S}_{\in {{M}^{4x4}}}\Psi \left( x \right)</math>
Wellenfunktion (4er Spinor) <math>\Psi '\left( x' \right)=\underbrace{S}_{\in {{M}^{4x4}}}\Psi \left( x \right)</math>
Line 201: Line 205:
Selbe Ableitung der Dirac-Gleichung
Selbe Ableitung der Dirac-Gleichung


:<math>\gamma {{'}^{\nu }}={{\gamma }^{\nu }}</math>
<math>\gamma {{'}^{\nu }}={{\gamma }^{\nu }}</math>


----


Also muss gelten  
Also muss gelten  
----


:<math>\left( \mathfrak{i} \gamma {{'}^{\nu }}\partial {{'}_{\nu }}-m' \right)\Psi '=0\Rightarrow \left( \mathfrak{i} {{\gamma }^{\nu }}{{\left( {{L}^{-1}} \right)}^{\mu }}_{\nu }{{\partial }_{\mu }}-m \right)S\Psi =0</math>
<math>\left( \mathfrak{i} \gamma {{'}^{\nu }}\partial {{'}_{\nu }}-m' \right)\Psi '=0\Rightarrow \left( \mathfrak{i} {{\gamma }^{\nu }}{{\left( {{L}^{-1}} \right)}^{\mu }}_{\nu }{{\partial }_{\mu }}-m \right)S\Psi =0</math>


----


Multiplikation von S<sup>-1</sup> von links
Multiplikation von S<sup>-1</sup> von links
Line 215: Line 224:
{{NumBlk|:|
{{NumBlk|:|


:<math>\Rightarrow {{S}^{-1}}{{\gamma }^{\alpha }}S={{L}^{\alpha }}_{\mu }{{\gamma }^{\mu }}</math>
<math>\Rightarrow {{S}^{-1}}{{\gamma }^{\alpha }}S={{L}^{\alpha }}_{\mu }{{\gamma }^{\mu }}</math>


: |(1.58)|RawN=.}}
: |(1.58)|RawN=.}}
Line 248: Line 257:
Für beliebige ß durch Exponenten (wichtiger Trick, steckt natürlich tiefere Mathematik dahinter: Liegruppen, Lie-Algebra…)
Für beliebige ß durch Exponenten (wichtiger Trick, steckt natürlich tiefere Mathematik dahinter: Liegruppen, Lie-Algebra…)


{{NumBlk|:|
{{NumBlk|:| <math>S\left( \beta  \right)=\underset{n\to \infty }{\mathop \lim }\,{{\left( \underline{\underline{1}}+\frac{1}{2}\frac{\beta }{N}{{{\underline{\underline{\gamma }}}}^{1}}{{{\underline{\underline{\gamma }}}}^{0}} \right)}^{N}}={{e}^{\frac{\beta }{2}{{{\underline{\underline{\gamma }}}}^{1}}{{{\underline{\underline{\gamma }}}}^{0}}}}</math>
:<math>\left( {{\gamma }^{\mu }}{{k}_{\mu }}-m \right)\underbrace{\left( {{\gamma }^{\nu }}{{k}_{\nu }}+m \right)\left( \begin{align}
 
& 0 \\
 
& 0 \\
 
& {{u}_{1}} \\
 
& {{u}_{2}} \\
 
\end{align} \right)}_{{{{\tilde{\phi }}}_{-}}}=0</math>
 
:<math>\begin{align}
 
& -{{{\tilde{\phi }}}_{-}}=-\left( E+m \right)\left( \begin{align}
 
& {{u}_{1}} \\
 
& {{u}_{2}} \\
 
& 0 \\
 
& 0 \\
 
\end{align} \right)-{{k}_{x}}\left( \begin{matrix}
 
0 & {{\sigma }_{x}} \\
 
-{{\sigma }_{x}} & 0  \\
 
\end{matrix} \right)\left( \begin{align}
 
& {{u}_{1}} \\
 
& {{u}_{2}} \\
 
& 0 \\
 
& 0 \\
 
\end{align} \right)-{{k}_{y}}... \\
 
& =-\left( \begin{align}
 
& \underline{k}.\underline{\sigma }\left( \begin{align}
 
& {{u}_{1}} \\
 
& {{u}_{2}} \\
 
\end{align} \right) \\
 
& \left( E+m \right)\left( \begin{align}
 
& {{u}_{1}} \\
 
& {{u}_{2}} \\
 
\end{align} \right) \\
 
\end{align} \right)
 
\end{align}</math>


|(1.60)|RawN=.}}
|(1.60)|RawN=.}}


Berechnung <font color="#33FF99">'''''(AUFGABE)''''' </font>ergibt
Berechnung <font color="#FFFF00">'''''(AUFGABE)''''' </font>ergibt


{{NumBlk|:| <math>S\left( \beta  \right)=\cosh \frac{\beta }{2}+\sinh \left( \frac{\beta }{2} \right){{\underline{\underline{\gamma }}}^{1}}{{\underline{\underline{\gamma }}}^{0}}</math>
{{NumBlk|:| <math>S\left( \beta  \right)=\cosh \frac{\beta }{2}+\sinh \left( \frac{\beta }{2} \right){{\underline{\underline{\gamma }}}^{1}}{{\underline{\underline{\gamma }}}^{0}}</math>
Line 324: Line 270:
{{NumBlk|:|(Viererstromdichte{{FB|Viererstromdichte}})
{{NumBlk|:|(Viererstromdichte{{FB|Viererstromdichte}})


:<math>{{j}^{\mu }}={{\Psi }^{+}}{{\gamma }^{0}}{{\gamma }^{\mu }}\Psi </math>
<math>{{j}^{\mu }}={{\Psi }^{+}}{{\gamma }^{0}}{{\gamma }^{\mu }}\Psi </math>


: |(1.62)|RawN=.}}
: |(1.62)|RawN=.}}
Line 330: Line 276:
{{NumBlk|:|(Kontinuitätsgleichung{{FB|Kontinuitätsgleichung}})
{{NumBlk|:|(Kontinuitätsgleichung{{FB|Kontinuitätsgleichung}})


:<math>{{\partial }_{\mu }}{{j}^{\mu }}=0</math>
<math>{{\partial }_{\mu }}{{j}^{\mu }}=0</math>


: |(1.63)|RawN=.}}
: |(1.63)|RawN=.}}
Line 338: Line 284:
{{NumBlk|:|
{{NumBlk|:|


:<math>\partial {{'}_{\mu }}=\frac{\partial }{\partial x{{'}^{\mu }}}=\frac{\partial x{{'}^{\nu }}}{\partial {{x}^{\mu }}}\frac{\partial }{\partial {{x}^{\nu }}}={{\left( {{L}^{-1}} \right)}^{\nu }}_{\mu }{{\partial }_{\nu }}</math>
<math>\partial {{'}_{\mu }}=\frac{\partial }{\partial x{{'}^{\mu }}}=\frac{\partial x{{'}^{\nu }}}{\partial {{x}^{\mu }}}\frac{\partial }{\partial {{x}^{\nu }}}={{\left( {{L}^{-1}} \right)}^{\nu }}_{\mu }{{\partial }_{\nu }}</math>


: |(1.64)|RawN=.}}
: |(1.64)|RawN=.}}


{{NumBlk|:|Außerdem <font color="#3399FF">'''''(AUFGABE)
{{NumBlk|:|Außerdem <font color="#FFFF00">'''''(AUFGABE)
</font>'''''''''''(Vierstrom transformiert sich wie kontravarianter Vektor)<math>j{{'}^{\mu }}={{L}^{\mu }}_{\nu }{{j}^{\nu }}</math>
</font>'''''''''''(Vierstrom transformiert sich wie kontravarianter Vektor)<math>j{{'}^{\mu }}={{L}^{\mu }}_{\nu }{{j}^{\nu }}</math>


: |(1.65)|RawN=.}}
: |(1.65)|RawN=.}}


:<math>\partial {{'}_{\mu }}j{{'}^{\mu }}=\underbrace{{{\left( {{L}^{-1}} \right)}^{\nu }}_{\mu }{{\partial }_{\nu }}{{L}^{\mu }}_{\alpha }}_{{{\delta }^{\nu }}_{\alpha }}{{j}^{\alpha }}={{\partial }_{\nu }}{{j}^{\nu }}=0</math>
<math>\partial {{'}_{\mu }}j{{'}^{\mu }}=\underbrace{{{\left( {{L}^{-1}} \right)}^{\nu }}_{\mu }{{\partial }_{\nu }}{{L}^{\mu }}_{\alpha }}_{{{\delta }^{\nu }}_{\alpha }}{{j}^{\alpha }}={{\partial }_{\nu }}{{j}^{\nu }}=0</math>


&#8594;
Lorentz-Invarianz von
Lorentz-Invarianz von


:<math>{{\partial }_{\mu }}{{j}^{\mu }}</math>
<math>{{\partial }_{\mu }}{{j}^{\mu }}</math>
Please note that all contributions to testwiki are considered to be released under the Creative Commons Attribution (see Testwiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!
Cancel Editing help (opens in new window)