Editing
Weitere Eigenschaften der Dirac-Gleichung
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
<noinclude>{{ScriptProf|Kapitel=1|Abschnitt=6|Prof=Prof. Dr. T. Brandes|Thema=Quantenmechanik|Schreiber=Moritz Schubotz}}</noinclude> Wir starten von {{NumBlk|:|<math>i{{\partial }_{t}}\Psi =\left( \underline{a}.\underline{\hat{p}}+\beta m \right)\Psi </math>|(1.45)|RawN=.}} # Kontinuitätsgleichung mit <math>{{\Psi }^{+}}</math>(1.45) und (1.45)+<math>\Psi </math> :<math>\begin{align} & \mathfrak{i} {{\Psi }^{+}}\dot{\Psi }\quad ={{\Psi }^{+}}\left( \underline{\alpha }.\hat{\underline{p}}+\beta m \right)\Psi \\ & -\mathfrak{i} {{{\dot{\Psi }}}^{+}}\Psi \quad ={{\left( \underline{p}\Psi \right)}^{+}}\underline{\alpha }\Psi +m{{\Psi }^{+}}\beta \Psi \\ & ------------------------ \\ & \mathfrak{i} {{\partial }_{t}}\underbrace{\left( {{\Psi }^{+}}\Psi \right)}_{:=\rho }\quad ={{\Psi }^{+}}\underline{\alpha }\left( \underline{p}\Psi \right)-{{\left( \underline{p}\Psi \right)}^{+}}\underline{\alpha }\Psi \\ & \quad =-\mathfrak{i} \sum\limits_{k}{{{\Psi }^{+}}{{\alpha }_{k}}\left( {{\partial }_{k}}\Psi \right)-{{\left( {{\partial }_{k}}\Psi \right)}^{+}}{{\alpha }_{k}}\Psi } \\ & \quad =-\mathfrak{i} \sum\limits_{k}{{{\partial }_{k}}\underbrace{\left( {{\Psi }^{+}}{{\alpha }_{k}}\Psi \right)}_{:={{j}_{k}}}} \\ \end{align}</math> :mit der {{FB|Wahrscheinlichkeitsdichte}} ρ und der {{FB|Wahrscheinlichkeitsstromdichte}} j<sub>k.</sub> {{NumBlk|:| :<math>\begin{align} & \rho :={{\Psi }^{+}}\Psi =\sum\limits_{k=1}^{4}{\Psi _{k}^{*}{{\Psi }_{k}}} \\ & \underline{j}={{\Psi }^{+}}\underline{\alpha }\Psi \\ \end{align}</math> : |(1.46)|RawN=.}} {{NumBlk|:|(Kontinuitätsgleichung) :<math>\Rightarrow {{\partial }_{t}}\rho +\underline{\nabla }\underline{j}=0</math> : |(1.47)|RawN=.}} :Die Wahrscheinlichkeitsdichte setzt sich aus den 4 Komponenten des Spinors <math>\Psi </math> zusammen. #<li value="2"> Lorentz-Invarianz</li> Umdefinieren der Matrizen <math>{{\underline{\underline{\alpha }}}_{k}},\underline{\underline{\beta }}</math>als {{NumBlk|:| :<math>{{\gamma }^{0}}:=\beta =\left( \begin{matrix} {\underline{\underline{1}}} & {\underline{\underline{0}}} \\ {\underline{\underline{0}}} & -\underline{\underline{1}} \\ \end{matrix} \right)\quad ;\quad {{\gamma }^{k}}=\beta {{\alpha }_{k}}=\left( \begin{matrix} 0 & {{\sigma }_{k}} \\ -{{\sigma }_{k}} & 0 \\ \end{matrix} \right)</math> |(1.48)|RawN=.}} {{NumBlk|:| :<math>\begin{align} & {{\left( {{\gamma }^{0}} \right)}^{+}}={{\gamma }^{0}},{{\left( {{\gamma }^{0}} \right)}^{2}}=1 \\ & {{\left( {{\gamma }^{k}} \right)}^{+}}=-{{\gamma }^{k}},{{\left( {{\gamma }^{k}} \right)}^{2}}=-1\quad k\in \left\{ 1,2,3 \right\} \\ & {{\gamma }^{\mu }}{{\gamma }^{\nu }}+{{\gamma }^{\nu }}{{\gamma }^{\mu }}=2{{g}^{\mu }}^{\nu },\quad {{g}^{\mu }}^{\nu }=diag\left( 1,-1,-1,-1 \right) \\ \end{align}</math> : |(1.49)|RawN=.}} (z.B. <math>{{\gamma }^{k}}{{\gamma }^{j}}+{{\gamma }^{j}}{{\gamma }^{k}}=\beta {{\alpha }_{k}}\beta {{\alpha }_{j}}+\beta {{\alpha }_{j}}\beta {{\alpha }_{k}}\underbrace{=}_{1.32}-{{\alpha }_{k}}{{\beta }^{2}}{{\alpha }_{j}}-{{\alpha }_{j}}{{\beta }^{2}}{{\alpha }_{k}}=-2{{\delta }_{jk}}</math>) == Relativistische Notation == kontravarianter Vierervektor{{FB|Vierervektor}} mit Index oben {{NumBlk|:| :<math>{{x}^{\mu }}\leftrightarrow \left( {{x}^{0}},{{x}^{1}},{{x}^{2}},{{x}^{3}} \right):=\left( ct,x,y,z \right)=\left( ct,\underline{x} \right)</math> : |(1.50)|RawN=.}} kovarianter Vierervektor mit Index unten <font size = "1">''(kow steht below)''</font> {{NumBlk|:| :<math>{{x}_{\mu }}=\left( {{x}_{0}},{{x}_{1}},{{x}_{2}},{{x}_{3}} \right):=\left( ct,-x,-y,-z \right)=\left( ct,-\underline{x} \right)</math> : |(1.51)|RawN=.}} * Das relativistische Skalarprodukt {{NumBlk|:| :<math>{{x}_{\mu }}{{x}^{\mu }}=\sum\limits_{\mu =0}^{4}{{{x}_{\mu }}{{x}^{\mu }}={{c}^{2}}{{t}^{2}}-{{{\underline{x}}}^{2}}}</math> : |(1.52)|RawN=.}} bleibt invariant unter Lorentz-Transformation. * Metrischer Tensor * <math>{{g}_{\mu }}_{\nu }={{g}^{\mu }}^{\nu }=diag\left( 1,-1,-1,-1 \right)</math> * in der SRT der selbe überall * Hoch und Runterziehen<math>{{x}_{\mu }}={{g}_{\mu }}_{\nu }{{x}^{\nu }}\quad {{x}^{\mu }}={{g}^{\mu }}^{\nu }{{x}_{\nu }}</math> * Lorentz-Transformation wie in (1.11) (Bewegung in x-Richtung) * :<math>\begin{align} & ct'=\gamma ct-\gamma \beta x \\ & x'=-\beta \gamma ct+\gamma x \\ \end{align}</math> {{NumBlk|:|allgemein <math>x{{'}_{\mu }}={{L}^{\mu }}_{\nu }{{x}^{\nu }}</math> |(1.53)|RawN=.}} hier mit <math>{{L}^{\mu }}_{\nu }=\left( \begin{matrix} \gamma & -\beta \gamma & 0 & 0 \\ -\beta \gamma & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{matrix} \right)</math>. * Invarianz von <math>{{x}_{\mu }}{{x}^{\mu }}</math>unter Lorentz-Transformationen: {{NumBlk|:| <math>x{{'}_{\mu }}x{{'}^{\mu }}={{g}_{\mu }}_{\nu }x{{'}^{\nu }}x{{'}^{\mu }}={{g}_{\mu }}_{\nu }{{L}^{\nu }}_{\alpha }{{x}^{\alpha }}{{L}^{\mu }}_{\beta }{{x}^{\beta }}={{g}_{\alpha }}_{\beta }{{x}^{\alpha }}{{x}^{\beta }}={{x}_{\beta }}{{x}^{\beta }}</math> |(1.54)|RawN=.}} Für Vierervektoren<math>{{a}^{\mu }}</math>, die sich wie der Koordinatenvektor <math>{{x}^{\mu }}</math> bei Lorentz-Transformation transformieren(1.53), ist <math>{{a}_{\mu }}{{a}^{\mu }}</math>Lorentz-invariant. Gradient{{FB|Vierergradient}} (etc) {{NumBlk|:| :<math>\begin{align} & {{\partial }^{\nu }}=\frac{\partial }{\partial {{x}_{\nu }}}\quad \text{kontravarianter Vierergradient} \\ & {{\partial }_{\nu }}=\frac{\partial }{\partial {{x}^{\nu }}}\quad \text{kovarianter Vierergradient} \\ \end{align}</math> : |(1.55)|RawN=.}} Die Dirac-Gleichung folgt aus :<math>\begin{align} & \left( \mathfrak{i} {{\partial }_{t}}-\underline{\alpha }\frac{1}{\mathfrak{i} }\underline{\nabla }-\beta m \right)\Psi =0\quad |\centerdot \beta \\ & \left( \mathfrak{i} {{\gamma }^{0}}\underbrace{{{\partial }_{t}}}_{{{\partial }_{0}}}+\frac{1}{\mathfrak{i} }\sum\limits_{k=1}^{3}{{{\gamma }^{k}}\underbrace{{{\partial }_{{{x}^{k}}}}}_{{{\partial }_{k}}}} \right)\Psi =0 \\ \end{align}</math> {{NumBlk|:|{{FB|Dirac-Gleichung}} :<math>\left( \mathfrak{i} {{\gamma }^{\mu }}{{\partial }_{\mu }}-m \right)\Psi =0</math> : |(1.56)|RawN=.|Border=1}} * Relativistische Invarianz: Gleiche Form der Dirac-Gleichun in zwei System S,S‘ (die sich gleichförmig gegeneinander bewegen) aber nicht Invarianz der Dgl. gegenüber Lorentz-Transformationen Es muss also gelten {{NumBlk|:| :<math>\left( \mathfrak{i} {{\gamma }^{\nu }}{{\partial }_{\nu }}-m \right)\Psi =0\ \left( \text{in S} \right)\quad \left( \mathfrak{i} \gamma {{'}^{\nu }}\partial {{'}_{\nu }}-m' \right)\Psi '=0\ \left( \text{in S }\!\!'\!\!\text{ } \right)</math> : |(1.57)|RawN=.}} (Hier ohne Vektorpotential, mit Vektorpotential A analog, vgl. Rollnik II) == ''Lorentz''-Transformation == Koordinaten <math>x{{'}^{\mu }}={{L}^{\mu }}_{\nu }{{x}^{\nu }}</math> Ableitung :<math>\partial {{'}_{\mu }}=\frac{\partial }{\partial x{{'}^{\mu }}}=\frac{\partial x{{'}^{\nu }}}{\partial {{x}^{\mu }}}\frac{\partial }{\partial {{x}^{\nu }}}={{\left( {{L}^{-1}} \right)}^{\nu }}_{\mu }{{\partial }_{\nu }}</math> Wellenfunktion (4er Spinor) <math>\Psi '\left( x' \right)=\underbrace{S}_{\in {{M}^{4x4}}}\Psi \left( x \right)</math> Ruhemasse ist dieselbe <math>m'=m</math> Selbe Ableitung der Dirac-Gleichung :<math>\gamma {{'}^{\nu }}={{\gamma }^{\nu }}</math> Also muss gelten :<math>\left( \mathfrak{i} \gamma {{'}^{\nu }}\partial {{'}_{\nu }}-m' \right)\Psi '=0\Rightarrow \left( \mathfrak{i} {{\gamma }^{\nu }}{{\left( {{L}^{-1}} \right)}^{\mu }}_{\nu }{{\partial }_{\mu }}-m \right)S\Psi =0</math> Multiplikation von S<sup>-1</sup> von links Vergleich mit (1.57) <math>{{\left( {{L}^{-1}} \right)}^{\mu }}_{\nu }{{S}^{-1}}{{\gamma }^{\nu }}S={{\gamma }^{\mu }}</math> {{NumBlk|:| :<math>\Rightarrow {{S}^{-1}}{{\gamma }^{\alpha }}S={{L}^{\alpha }}_{\mu }{{\gamma }^{\mu }}</math> : |(1.58)|RawN=.}} Wenn (1.58) erfüllt ist, folgt relativistische Invarianz. * Konstriktion der Matrix S: Für kleine <math>\beta :=\frac{v}{c}\ll 1</math> {{NumBlk|:| <math>S\left( \beta \right)=\underline{\underline{1}}+\frac{\beta }{2}{{\gamma }^{1}}{{\gamma }^{0}}+O\left( {{\beta }^{2}} \right)=\left( \begin{matrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{matrix} \right)+\frac{\beta }{2}\left( \begin{matrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ \end{matrix} \right)+O\left( {{\beta }^{2}} \right)</math> : |(1.59)|RawN=.}} Für beliebige ß durch Exponenten (wichtiger Trick, steckt natürlich tiefere Mathematik dahinter: Liegruppen, Lie-Algebra…) {{NumBlk|:| :<math>\left( {{\gamma }^{\mu }}{{k}_{\mu }}-m \right)\underbrace{\left( {{\gamma }^{\nu }}{{k}_{\nu }}+m \right)\left( \begin{align} & 0 \\ & 0 \\ & {{u}_{1}} \\ & {{u}_{2}} \\ \end{align} \right)}_{{{{\tilde{\phi }}}_{-}}}=0</math> :<math>\begin{align} & -{{{\tilde{\phi }}}_{-}}=-\left( E+m \right)\left( \begin{align} & {{u}_{1}} \\ & {{u}_{2}} \\ & 0 \\ & 0 \\ \end{align} \right)-{{k}_{x}}\left( \begin{matrix} 0 & {{\sigma }_{x}} \\ -{{\sigma }_{x}} & 0 \\ \end{matrix} \right)\left( \begin{align} & {{u}_{1}} \\ & {{u}_{2}} \\ & 0 \\ & 0 \\ \end{align} \right)-{{k}_{y}}... \\ & =-\left( \begin{align} & \underline{k}.\underline{\sigma }\left( \begin{align} & {{u}_{1}} \\ & {{u}_{2}} \\ \end{align} \right) \\ & \left( E+m \right)\left( \begin{align} & {{u}_{1}} \\ & {{u}_{2}} \\ \end{align} \right) \\ \end{align} \right) \end{align}</math> |(1.60)|RawN=.}} Berechnung <font color="#33FF99">'''''(AUFGABE)''''' </font>ergibt {{NumBlk|:| <math>S\left( \beta \right)=\cosh \frac{\beta }{2}+\sinh \left( \frac{\beta }{2} \right){{\underline{\underline{\gamma }}}^{1}}{{\underline{\underline{\gamma }}}^{0}}</math> |(1.61)|RawN=.}} * Kontinuitätsgleichung, Viererstromdichte (1.37) {{NumBlk|:|(Viererstromdichte{{FB|Viererstromdichte}}) :<math>{{j}^{\mu }}={{\Psi }^{+}}{{\gamma }^{0}}{{\gamma }^{\mu }}\Psi </math> : |(1.62)|RawN=.}} {{NumBlk|:|(Kontinuitätsgleichung{{FB|Kontinuitätsgleichung}}) :<math>{{\partial }_{\mu }}{{j}^{\mu }}=0</math> : |(1.63)|RawN=.}} Lorentz-Invarianz von <math>{{\partial }_{\mu }}{{j}^{\mu }}</math>: zeige <math>\partial {{'}_{\mu }}j{{'}^{\mu }}=0</math> wobei {{NumBlk|:| :<math>\partial {{'}_{\mu }}=\frac{\partial }{\partial x{{'}^{\mu }}}=\frac{\partial x{{'}^{\nu }}}{\partial {{x}^{\mu }}}\frac{\partial }{\partial {{x}^{\nu }}}={{\left( {{L}^{-1}} \right)}^{\nu }}_{\mu }{{\partial }_{\nu }}</math> : |(1.64)|RawN=.}} {{NumBlk|:|Außerdem <font color="#3399FF">'''''(AUFGABE) </font>'''''''''''(Vierstrom transformiert sich wie kontravarianter Vektor)<math>j{{'}^{\mu }}={{L}^{\mu }}_{\nu }{{j}^{\nu }}</math> : |(1.65)|RawN=.}} :<math>\partial {{'}_{\mu }}j{{'}^{\mu }}=\underbrace{{{\left( {{L}^{-1}} \right)}^{\nu }}_{\mu }{{\partial }_{\nu }}{{L}^{\mu }}_{\alpha }}_{{{\delta }^{\nu }}_{\alpha }}{{j}^{\alpha }}={{\partial }_{\nu }}{{j}^{\nu }}=0</math> → Lorentz-Invarianz von :<math>{{\partial }_{\mu }}{{j}^{\mu }}</math>
Summary:
Please note that all contributions to testwiki are considered to be released under the Creative Commons Attribution (see
Testwiki:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Templates used on this page:
Template:Anker
(
edit
)
Template:Anker/code
(
edit
)
Template:FB
(
edit
)
Template:NumBlk
(
edit
)
Template:ScriptProf
(
edit
)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
Edit source
View history
More
Search
Navigation
Main page
Recent changes
Random page
Physikerwelt
Tools
What links here
Related changes
Special pages
Page information
In other projects