Editing Normalschwingungen

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 2: Line 2:


Anwendung: Kleine Schwingungen eines Systems von Massepunkten
Anwendung: Kleine Schwingungen eines Systems von Massepunkten
:<math>{{m}_{i}}</math>
<math>{{m}_{i}}</math>




Line 9: Line 9:
Außerdem sei das Potenzial beliebig
Außerdem sei das Potenzial beliebig


:<math>V({{\bar{r}}_{1}},{{\bar{r}}_{2}},...,{{\bar{r}}_{N}})</math>
<math>V({{\bar{r}}_{1}},{{\bar{r}}_{2}},...,{{\bar{r}}_{N}})</math>
es existiere lediglich eine stabile Ruhelage.
es existiere lediglich eine stabile Ruhelage.


Line 18: Line 18:




:<math>V({{q}_{1}},...,{{q}_{f}})=V(0,....,0)+\sum\limits_{j}{{{\left( \frac{\partial V}{\partial {{q}_{j}}} \right)}_{0}}{{q}_{j}}+\frac{1}{2}\sum\limits_{j,k}{{{\left( \frac{{{\partial }^{2}}V}{\partial {{q}_{j}}\partial {{q}_{k}}} \right)}_{0}}{{q}_{j}}{{q}_{k}}+...}}</math>
<math>V({{q}_{1}},...,{{q}_{f}})=V(0,....,0)+\sum\limits_{j}{{{\left( \frac{\partial V}{\partial {{q}_{j}}} \right)}_{0}}{{q}_{j}}+\frac{1}{2}\sum\limits_{j,k}{{{\left( \frac{{{\partial }^{2}}V}{\partial {{q}_{j}}\partial {{q}_{k}}} \right)}_{0}}{{q}_{j}}{{q}_{k}}+...}}</math>




Line 26: Line 26:




:<math>\begin{align}
<math>\begin{align}
   & V(0,....,0)=0 \\
   & V(0,....,0)=0 \\
  & \sum\limits_{j}{{{\left( \frac{\partial V}{\partial {{q}_{j}}} \right)}_{0}}{{q}_{j}}}=0\quad \left( \frac{\partial V}{\partial {{q}_{j}}} \right)=-{{Q}_{j}}=0 \\
  & \sum\limits_{j}{{{\left( \frac{\partial V}{\partial {{q}_{j}}} \right)}_{0}}{{q}_{j}}}=0\quad \left( \frac{\partial V}{\partial {{q}_{j}}} \right)=-{{Q}_{j}}=0 \\
Line 35: Line 35:
Für kleine Schwingungen hinreichend genau erhalten wir also in niedrigster Näherung grundsätzlich harmonische Schwingungen in einem q²- Potenzial :
Für kleine Schwingungen hinreichend genau erhalten wir also in niedrigster Näherung grundsätzlich harmonische Schwingungen in einem q²- Potenzial :


Das Potenzial ergibt eine positiv definite quadratische Form (positiv definit, da Ruhelage stabil!)
Das Potenzial ergibt eine positiv definite quadratische Form ( positiv definit, da Ruhelage stabil !)




:<math>V({{q}_{1}},...,{{q}_{f}})\approx \frac{1}{2}\sum\limits_{j,k}{{{V}_{jk}}{{q}_{j}}{{q}_{k}}\ge 0}\quad \quad {{V}_{jk}}={{V}_{kj}}</math>
<math>V({{q}_{1}},...,{{q}_{f}})\approx \frac{1}{2}\sum\limits_{j,k}{{{V}_{jk}}{{q}_{j}}{{q}_{k}}\ge 0}\quad \quad {{V}_{jk}}={{V}_{kj}}</math>




Line 44: Line 44:




:<math>T=\frac{1}{2}\sum\limits_{i}{{{m}_{i}}{{{\vec{v}}}_{i}}^{2}}\ge 0</math>
<math>T=\frac{1}{2}\sum\limits_{i}{{{m}_{i}}{{{\vec{v}}}_{i}}^{2}}\ge 0</math>






:<math>\begin{align}
<math>\begin{align}
   & {{{\vec{v}}}_{i}}=\sum\limits_{j}{{}}\left( \frac{\partial {{{\vec{r}}}_{i}}}{\partial {{q}_{j}}} \right){{{\dot{q}}}_{j}} \\
   & {{{\vec{v}}}_{i}}=\sum\limits_{j}{{}}\left( \frac{\partial {{{\vec{r}}}_{i}}}{\partial {{q}_{j}}} \right){{{\dot{q}}}_{j}} \\
  & T=\frac{1}{2}\sum\limits_{i}{{{m}_{i}}}\left( \sum\limits_{j,k}{\left( \frac{\partial {{{\vec{r}}}_{i}}}{\partial {{q}_{j}}} \right)\left( \frac{\partial {{{\vec{r}}}_{i}}}{\partial {{q}_{j}}} \right)}{{{\dot{q}}}_{j}}{{{\dot{q}}}_{k}} \right)\ge 0 \\
  & T=\frac{1}{2}\sum\limits_{i}{{{m}_{i}}}\left( \sum\limits_{j,k}{\left( \frac{\partial {{{\vec{r}}}_{i}}}{\partial {{q}_{j}}} \right)\left( \frac{\partial {{{\vec{r}}}_{i}}}{\partial {{q}_{j}}} \right)}{{{\dot{q}}}_{j}}{{{\dot{q}}}_{k}} \right)\ge 0 \\
Line 56: Line 56:




Die Auswertung der Ableitungen des Radiusvektor an der Ruhelage (0) gilt dann als niedrigste (quadratische) Näherung für kleine Schwingungen.
Die Auswertung der Ableitungen des Radiusvektor an der Ruhelage (0) gilt dann als niedrigste ( quadratische) Näherung für kleine Schwingungen.


Auch die kinetische Energie ist in unserem Fall nun  eine positiv definite quadratische Form.
Auch die kinetische Energie ist in unserem Fall nun  eine positiv definite quadratische Form.
Line 63: Line 63:




:<math>\begin{align}
<math>\begin{align}
   & L=T-V=\frac{1}{2}\left( \sum\limits_{j,k}{{{T}_{jk}}}{{{\dot{q}}}_{j}}{{{\dot{q}}}_{k}}-\sum\limits_{j,k}{{{V}_{jk}}}{{q}_{j}}{{q}_{k}} \right) \\
   & L=T-V=\frac{1}{2}\left( \sum\limits_{j,k}{{{T}_{jk}}}{{{\dot{q}}}_{j}}{{{\dot{q}}}_{k}}-\sum\limits_{j,k}{{{V}_{jk}}}{{q}_{j}}{{q}_{k}} \right) \\
  & \frac{\partial L}{\partial {{{\dot{q}}}_{l}}}=\frac{1}{2}\sum\limits_{j,k}{{{T}_{jk}}}\frac{\partial }{\partial {{{\dot{q}}}_{l}}}\left( {{{\dot{q}}}_{j}}{{{\dot{q}}}_{k}} \right)=\frac{1}{2}\sum\limits_{j,k}{{{T}_{jk}}}\left( {{\delta }_{jl}}{{{\dot{q}}}_{k}}+{{\delta }_{kl}}{{{\dot{q}}}_{j}} \right)=\frac{1}{2}\sum\limits_{j,k}{{{T}_{lk}}}{{{\dot{q}}}_{k}}+{{T}_{lj}}{{{\dot{q}}}_{j}}=\sum\limits_{k}{{{T}_{lk}}}{{{\dot{q}}}_{k}}\quad mit\ {{T}_{jl}}={{T}_{lj}} \\
  & \frac{\partial L}{\partial {{{\dot{q}}}_{l}}}=\frac{1}{2}\sum\limits_{j,k}{{{T}_{jk}}}\frac{\partial }{\partial {{{\dot{q}}}_{l}}}\left( {{{\dot{q}}}_{j}}{{{\dot{q}}}_{k}} \right)=\frac{1}{2}\sum\limits_{j,k}{{{T}_{jk}}}\left( {{\delta }_{jl}}{{{\dot{q}}}_{k}}+{{\delta }_{kl}}{{{\dot{q}}}_{j}} \right)=\frac{1}{2}\sum\limits_{j,k}{{{T}_{lk}}}{{{\dot{q}}}_{k}}+{{T}_{lj}}{{{\dot{q}}}_{j}}=\sum\limits_{k}{{{T}_{lk}}}{{{\dot{q}}}_{k}}\quad mit\ {{T}_{jl}}={{T}_{lj}} \\
Line 74: Line 74:




:<math>\begin{align}
<math>\begin{align}
   & \left( r,\vartheta ,\phi  \right)=\left( {{q}_{1}},{{q}_{2}},{{q}_{3}} \right) \\
   & \left( r,\vartheta ,\phi  \right)=\left( {{q}_{1}},{{q}_{2}},{{q}_{3}} \right) \\
  & x=r\cos \phi \sin \vartheta  \\
  & x=r\cos \phi \sin \vartheta  \\
Line 83: Line 83:




:<math>\begin{align}
<math>\begin{align}
   & {{{\vec{v}}}_{{}}}=\sum\limits_{j}{{}}\left( \frac{\partial {{{\vec{r}}}_{{}}}}{\partial {{q}_{j}}} \right){{{\dot{q}}}_{j}} \\
   & {{{\vec{v}}}_{{}}}=\sum\limits_{j}{{}}\left( \frac{\partial {{{\vec{r}}}_{{}}}}{\partial {{q}_{j}}} \right){{{\dot{q}}}_{j}} \\
  &  \\
  &  \\
Line 92: Line 92:




:<math>\begin{align}
<math>\begin{align}
   & {{v}_{x}}=\frac{dx}{dt}=\frac{\partial x}{\partial r}\dot{r}+\frac{\partial x}{\partial \vartheta }\dot{\vartheta }+\frac{\partial x}{\partial \phi }\dot{\phi }=\sin \vartheta \cos \phi \dot{r}+r\cos \vartheta \cos \phi \dot{\vartheta }-r\sin \vartheta \sin \phi \dot{\phi } \\
   & {{v}_{x}}=\frac{dx}{dt}=\frac{\partial x}{\partial r}\dot{r}+\frac{\partial x}{\partial \vartheta }\dot{\vartheta }+\frac{\partial x}{\partial \phi }\dot{\phi }=\sin \vartheta \cos \phi \dot{r}+r\cos \vartheta \cos \phi \dot{\vartheta }-r\sin \vartheta \sin \phi \dot{\phi } \\
  & {{v}_{y}}=\frac{dy}{dt}=\frac{\partial y}{\partial r}\dot{r}+\frac{\partial y}{\partial \vartheta }\dot{\vartheta }+\frac{\partial y}{\partial \phi }\dot{\phi }=\sin \vartheta \sin \phi \dot{r}+r\cos \vartheta \sin \phi \dot{\vartheta }+r\sin \vartheta \cos \phi \dot{\phi } \\
  & {{v}_{y}}=\frac{dy}{dt}=\frac{\partial y}{\partial r}\dot{r}+\frac{\partial y}{\partial \vartheta }\dot{\vartheta }+\frac{\partial y}{\partial \phi }\dot{\phi }=\sin \vartheta \sin \phi \dot{r}+r\cos \vartheta \sin \phi \dot{\vartheta }+r\sin \vartheta \cos \phi \dot{\phi } \\
Line 103: Line 103:




:<math>\left( \begin{matrix}
<math>\left( \begin{matrix}
   \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \vartheta } & \frac{\partial x}{\partial \phi }  \\
   \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \vartheta } & \frac{\partial x}{\partial \phi }  \\
   \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \vartheta } & \frac{\partial y}{\partial \phi }  \\
   \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \vartheta } & \frac{\partial y}{\partial \phi }  \\
Line 115: Line 115:




:<math>\begin{align}
<math>\begin{align}
   & T=\frac{1}{2}\sum\limits_{j,k}{{{T}_{jk}}}{{{\dot{q}}}_{j}}{{{\dot{q}}}_{k}} \\
   & T=\frac{1}{2}\sum\limits_{j,k}{{{T}_{jk}}}{{{\dot{q}}}_{j}}{{{\dot{q}}}_{k}} \\
  & {{T}_{jk}}={{T}_{kj}}\approx \sum\limits_{i}{{{m}_{i}}{{\left( \frac{\partial {{{\vec{r}}}_{i}}}{\partial {{q}_{j}}} \right)}_{0}}{{\left( \frac{\partial {{{\vec{r}}}_{i}}}{\partial {{q}_{j}}} \right)}_{0}}} \\
  & {{T}_{jk}}={{T}_{kj}}\approx \sum\limits_{i}{{{m}_{i}}{{\left( \frac{\partial {{{\vec{r}}}_{i}}}{\partial {{q}_{j}}} \right)}_{0}}{{\left( \frac{\partial {{{\vec{r}}}_{i}}}{\partial {{q}_{j}}} \right)}_{0}}} \\
Line 123: Line 123:




:<math>\begin{align}
<math>\begin{align}
   & {{T}_{11}}=m\left( {{\sin }^{2}}\vartheta {{\cos }^{2}}\phi +{{\sin }^{2}}\vartheta {{\sin }^{2}}\phi +{{\cos }^{2}}\vartheta  \right)=m \\
   & {{T}_{11}}=m\left( {{\sin }^{2}}\vartheta {{\cos }^{2}}\phi +{{\sin }^{2}}\vartheta {{\sin }^{2}}\phi +{{\cos }^{2}}\vartheta  \right)=m \\
  & {{T}_{22}}=m{{r}^{2}}\left( {{\cos }^{2}}\vartheta {{\cos }^{2}}\phi +{{\cos }^{2}}\vartheta {{\sin }^{2}}\phi +{{\sin }^{2}}\vartheta  \right)=m{{r}^{2}} \\
  & {{T}_{22}}=m{{r}^{2}}\left( {{\cos }^{2}}\vartheta {{\cos }^{2}}\phi +{{\cos }^{2}}\vartheta {{\sin }^{2}}\phi +{{\sin }^{2}}\vartheta  \right)=m{{r}^{2}} \\
Line 132: Line 132:
Diese Wert hängen dabei von den gewählten Koordinaten, also den qj ab.
Diese Wert hängen dabei von den gewählten Koordinaten, also den qj ab.


Aus diesem Grund (um dies zu erreichen) wurden ja gerade die qj so eingeführt.
Aus diesem Grund ( um dies zu erreichen) wurden ja gerade die qj so eingeführt.




:<math>\begin{align}
<math>\begin{align}
   & {{T}_{12}}={{T}_{21}}=mr\left( \sin \vartheta \cos \phi \cos \vartheta \cos \phi +\sin \vartheta \sin \phi \cos \vartheta \sin \phi -\sin \vartheta \cos \vartheta  \right)=0 \\
   & {{T}_{12}}={{T}_{21}}=mr\left( \sin \vartheta \cos \phi \cos \vartheta \cos \phi +\sin \vartheta \sin \phi \cos \vartheta \sin \phi -\sin \vartheta \cos \vartheta  \right)=0 \\
  & {{T}_{13}}={{T}_{31}}=0 \\
  & {{T}_{13}}={{T}_{31}}=0 \\
Line 143: Line 143:




:<math>\begin{align}
<math>\begin{align}
   & {{T}_{jk}}=\left( \begin{matrix}
   & {{T}_{jk}}=\left( \begin{matrix}
   m & 0 & 0  \\
   m & 0 & 0  \\
Line 156: Line 156:




:<math>\begin{align}
<math>\begin{align}
   & L=T-V=\frac{1}{2}\left( \sum\limits_{j,k}{{{T}_{jk}}}{{{\dot{q}}}_{j}}{{{\dot{q}}}_{k}}-\sum\limits_{j,k}{{{V}_{jk}}}{{q}_{j}}{{q}_{k}} \right) \\
   & L=T-V=\frac{1}{2}\left( \sum\limits_{j,k}{{{T}_{jk}}}{{{\dot{q}}}_{j}}{{{\dot{q}}}_{k}}-\sum\limits_{j,k}{{{V}_{jk}}}{{q}_{j}}{{q}_{k}} \right) \\
  & \frac{\partial L}{\partial {{{\dot{q}}}_{l}}}=\frac{1}{2}\sum\limits_{j,k}{{{T}_{jk}}}\frac{\partial }{\partial {{{\dot{q}}}_{l}}}\left( {{{\dot{q}}}_{j}}{{{\dot{q}}}_{k}} \right)=\frac{1}{2}\sum\limits_{j,k}{{{T}_{jk}}}\left( {{\delta }_{jl}}{{{\dot{q}}}_{k}}+{{\delta }_{kl}}{{{\dot{q}}}_{j}} \right)=\frac{1}{2}\sum\limits_{j,k}{{{T}_{lk}}}{{{\dot{q}}}_{k}}+{{T}_{lj}}{{{\dot{q}}}_{j}}=\sum\limits_{k}{{{T}_{lk}}}{{{\dot{q}}}_{k}}\quad mit\ {{T}_{jl}}={{T}_{lj}} \\
  & \frac{\partial L}{\partial {{{\dot{q}}}_{l}}}=\frac{1}{2}\sum\limits_{j,k}{{{T}_{jk}}}\frac{\partial }{\partial {{{\dot{q}}}_{l}}}\left( {{{\dot{q}}}_{j}}{{{\dot{q}}}_{k}} \right)=\frac{1}{2}\sum\limits_{j,k}{{{T}_{jk}}}\left( {{\delta }_{jl}}{{{\dot{q}}}_{k}}+{{\delta }_{kl}}{{{\dot{q}}}_{j}} \right)=\frac{1}{2}\sum\limits_{j,k}{{{T}_{lk}}}{{{\dot{q}}}_{k}}+{{T}_{lj}}{{{\dot{q}}}_{j}}=\sum\limits_{k}{{{T}_{lk}}}{{{\dot{q}}}_{k}}\quad mit\ {{T}_{jl}}={{T}_{lj}} \\
Line 170: Line 170:




:<math>\begin{align}
<math>\begin{align}
   & {{q}_{k}}(t)={{A}_{k}}{{e}^{iwt}}\quad {{A}_{k}}\in C \\
   & {{q}_{k}}(t)={{A}_{k}}{{e}^{iwt}}\quad {{A}_{k}}\in C \\
  & \sum\limits_{k}{({{V}_{lk}}-{{\omega }^{2}}{{T}_{lk}}){{A}_{k}}=0} \\
  & \sum\limits_{k}{({{V}_{lk}}-{{\omega }^{2}}{{T}_{lk}}){{A}_{k}}=0} \\
Line 183: Line 183:




:<math>\det \left( {{V}_{lk}}-{{\omega }^{2}}{{T}_{lk}} \right)=0</math>
<math>\det \left( {{V}_{lk}}-{{\omega }^{2}}{{T}_{lk}} \right)=0</math>




Line 189: Line 189:




:<math>{{V}_{lk}},{{T}_{lk}}positiv\ definit\Rightarrow {{\omega }^{2}}>0</math>
<math>{{V}_{lk}},{{T}_{lk}}positiv\ definit\Rightarrow {{\omega }^{2}}>0</math>
für alle Nullstellen des charakteristischen Polynoms.
für alle Nullstellen des charakteristischen Polynoms.


Line 195: Line 195:




:<math>\begin{align}
<math>\begin{align}
   & \sum\limits_{k}{({{V}_{lk}}-{{\omega }^{2}}{{T}_{lk}}){{A}_{k}}=0}\left| \cdot \sum\limits_{l}{{{A}_{l}}^{*}} \right. \\
   & \sum\limits_{k}{({{V}_{lk}}-{{\omega }^{2}}{{T}_{lk}}){{A}_{k}}=0}\left| \cdot \sum\limits_{l}{{{A}_{l}}^{*}} \right. \\
  & \sum\limits_{l,k}{{{V}_{lk}}{{A}_{l}}^{*}{{A}_{k}}-}{{\omega }^{2}}\sum\limits_{l,k}{{{T}_{lk}}{{A}_{l}}^{*}{{A}_{k}}}=0 \\
  & \sum\limits_{l,k}{{{V}_{lk}}{{A}_{l}}^{*}{{A}_{k}}-}{{\omega }^{2}}\sum\limits_{l,k}{{{T}_{lk}}{{A}_{l}}^{*}{{A}_{k}}}=0 \\
Line 210: Line 210:




:<math>\begin{align}
<math>\begin{align}
   & {{q}_{k}}(t)={{A}_{k}}{{e}^{iwt}}\quad {{A}_{k}}\in C \\
   & {{q}_{k}}(t)={{A}_{k}}{{e}^{iwt}}\quad {{A}_{k}}\in C \\
  & \sum\limits_{k}{({{V}_{lk}}-{{\omega }^{2}}{{T}_{lk}}){{A}_{k}}=0} \\
  & \sum\limits_{k}{({{V}_{lk}}-{{\omega }^{2}}{{T}_{lk}}){{A}_{k}}=0} \\
Line 217: Line 217:


sind die Eigenfrequenzen
sind die Eigenfrequenzen
:<math>{{\omega }^{2}}_{a}\quad a=1,...,f</math>
<math>{{\omega }^{2}}_{a}\quad a=1,...,f</math>




und die Eigenvektoren
und die Eigenvektoren
:<math>{{A}_{k}}^{(a)}\quad a=1,...,f</math>
<math>{{A}_{k}}^{(a)}\quad a=1,...,f</math>




Line 229: Line 229:




:<math>\begin{align}
<math>\begin{align}
   & {{q}_{k}}(t)=\operatorname{Re}\left\{ \sum\limits_{a=1}^{f}{{{C}_{a}}}{{A}_{k}}^{(a)}{{e}^{i{{w}_{a}}t}} \right\} \\
   & {{q}_{k}}(t)=\operatorname{Re}\left\{ \sum\limits_{a=1}^{f}{{{C}_{a}}}{{A}_{k}}^{(a)}{{e}^{i{{w}_{a}}t}} \right\} \\
  &  \\
  &  \\
\end{align}</math> Die <math>{{C}_{a}}</math>
\end{align}</math>
 
 
Die
<math>{{C}_{a}}</math>
werden durch die Anfangsbedingungen
werden durch die Anfangsbedingungen
:<math>{{q}_{k}}(0),{{\dot{q}}_{k}}(0)</math>
<math>{{q}_{k}}(0),{{\dot{q}}_{k}}(0)</math>
bestimmt
bestimmt


Line 244: Line 248:


Seien diese neuen Koordinaten
Seien diese neuen Koordinaten
:<math>{{Q}_{j}}</math>
<math>{{Q}_{j}}</math>
so soll gelten:
so soll gelten:




:<math>{{\ddot{Q}}_{j}}+{{\omega }_{j}}^{2}{{Q}_{j}}=0\quad j=1,...,f</math>
<math>{{\ddot{Q}}_{j}}+{{\omega }_{j}}^{2}{{Q}_{j}}=0\quad j=1,...,f</math>




Line 256: Line 260:




:<math>{{A}_{k}}^{(a)}</math>
<math>{{A}_{k}}^{(a)}</math>
  eingesetzt. In diesen müssen sich dann die generalisierten Koordinaten mit den {{FB|Normalkoordinaten}} als Entwicklungskoeffizienten darstellen lassen:
  eingesetzt. In diesen müssen sich dann die generalisierten Koordinaten mit den {{FB|Normalkoordinaten}} als Entwicklungskoeffizienten darstellen lassen:




:<math>\begin{align}
<math>\begin{align}
   & {{q}_{k}}(t)=\sum\limits_{a=1}^{f}{{}}{{A}_{k}}^{(a)}{{Q}_{a}} \\
   & {{q}_{k}}(t)=\sum\limits_{a=1}^{f}{{}}{{A}_{k}}^{(a)}{{Q}_{a}} \\
  &  \\
  &  \\
Line 270: Line 274:




:<math>\vec{q}=A\vec{Q}\quad mit\ \vec{q},\vec{Q}\in {{R}^{f}}</math>
<math>\vec{q}=A\vec{Q}\quad mit\ \vec{q},\vec{Q}\in {{R}^{f}}</math>




Line 280: Line 284:




:<math>\begin{align}
<math>\begin{align}
   & \sum\limits_{k}{({{V}_{lk}}-{{\omega }_{a}}^{2}{{T}_{lk}}){{A}_{k}}^{a}=0}\left| \cdot \sum\limits_{l}{{{A}_{l}}^{b}} \right. \\
   & \sum\limits_{k}{({{V}_{lk}}-{{\omega }_{a}}^{2}{{T}_{lk}}){{A}_{k}}^{a}=0}\left| \cdot \sum\limits_{l}{{{A}_{l}}^{b}} \right. \\
  & \sum\limits_{l}{({{V}_{kl}}-{{\omega }_{b}}^{2}{{T}_{kl}}){{A}_{l}}^{b}=0\left| \cdot \sum\limits_{k}{{{A}_{k}}^{b}} \right.} \\
  & \sum\limits_{l}{({{V}_{kl}}-{{\omega }_{b}}^{2}{{T}_{kl}}){{A}_{l}}^{b}=0\left| \cdot \sum\limits_{k}{{{A}_{k}}^{b}} \right.} \\
Line 287: Line 291:




:<math>\begin{align}
<math>\begin{align}
   & \sum\limits_{k,l}{{{A}_{l}}^{b}({{V}_{lk}}-{{V}_{kl}}){{A}_{k}}^{a}-{{A}_{l}}^{b}({{\omega }_{a}}^{2}{{T}_{lk}}-{{\omega }_{b}}^{2}{{T}_{kl}}){{A}_{k}}^{a}}=0 \\
   & \sum\limits_{k,l}{{{A}_{l}}^{b}({{V}_{lk}}-{{V}_{kl}}){{A}_{k}}^{a}-{{A}_{l}}^{b}({{\omega }_{a}}^{2}{{T}_{lk}}-{{\omega }_{b}}^{2}{{T}_{kl}}){{A}_{k}}^{a}}=0 \\
  & {{V}_{lk}}={{V}_{kl}} \\
  & {{V}_{lk}}={{V}_{kl}} \\
Line 297: Line 301:




:<math>{{\omega }_{a}}^{2}-{{\omega }_{b}}^{2}\ne 0</math>
<math>{{\omega }_{a}}^{2}-{{\omega }_{b}}^{2}\ne 0</math>
Die Eigenwerte sind nicht entartet, natürlich für verschiedene a/b
Die Eigenwerte sind nicht entartet, natürlich für verschiedene a/b


Line 303: Line 307:




:<math>\sum\limits_{k,l}{{}}{{A}_{l}}^{b}{{T}_{kl}}{{A}_{k}}^{a}={{\delta }_{ab}}</math>
<math>\sum\limits_{k,l}{{}}{{A}_{l}}^{b}{{T}_{kl}}{{A}_{k}}^{a}={{\delta }_{ab}}</math>




Line 313: Line 317:




:<math>\sum\limits_{k}{({{V}_{lk}}-{{\omega }_{a}}^{2}{{T}_{lk}}){{A}_{k}}^{a}=0}\left| \cdot \sum\limits_{l}{{{A}_{l}}^{b}} \right.</math> dass <math>\begin{align}
<math>\sum\limits_{k}{({{V}_{lk}}-{{\omega }_{a}}^{2}{{T}_{lk}}){{A}_{k}}^{a}=0}\left| \cdot \sum\limits_{l}{{{A}_{l}}^{b}} \right.</math>
 
 
dass
 
 
<math>\begin{align}
   & \sum\limits_{k,l}{({{A}_{l}}^{b}{{V}_{lk}}-{{\omega }_{a}}^{2}{{A}_{l}}^{b}{{T}_{lk}}){{A}_{k}}^{a}=0} \\
   & \sum\limits_{k,l}{({{A}_{l}}^{b}{{V}_{lk}}-{{\omega }_{a}}^{2}{{A}_{l}}^{b}{{T}_{lk}}){{A}_{k}}^{a}=0} \\
  & \sum\limits_{k,l}{({{A}_{l}}^{b}{{V}_{lk}}{{A}_{k}}^{a})=\sum\limits_{k,l}{{{\omega }_{a}}^{2}{{A}_{l}}^{b}{{T}_{lk}}{{A}_{k}}^{a}}}={{\omega }_{a}}^{2}{{\delta }_{ab}} \\
  & \sum\limits_{k,l}{({{A}_{l}}^{b}{{V}_{lk}}{{A}_{k}}^{a})=\sum\limits_{k,l}{{{\omega }_{a}}^{2}{{A}_{l}}^{b}{{T}_{lk}}{{A}_{k}}^{a}}}={{\omega }_{a}}^{2}{{\delta }_{ab}} \\
Line 324: Line 334:




:<math>\begin{align}
<math>\begin{align}
   & L=T-V=\frac{1}{2}\left( \sum\limits_{j,k}{{{T}_{jk}}}{{{\dot{q}}}_{j}}{{{\dot{q}}}_{k}}-\sum\limits_{j,k}{{{V}_{jk}}}{{q}_{j}}{{q}_{k}} \right) \\
   & L=T-V=\frac{1}{2}\left( \sum\limits_{j,k}{{{T}_{jk}}}{{{\dot{q}}}_{j}}{{{\dot{q}}}_{k}}-\sum\limits_{j,k}{{{V}_{jk}}}{{q}_{j}}{{q}_{k}} \right) \\
  & L=\frac{1}{2}\left( \sum\limits_{a,b}{\left( \sum\limits_{j,k}{{{A}_{j}}^{b}{{T}_{jk}}{{A}_{k}}^{a}{{{\dot{Q}}}_{a}}{{{\dot{Q}}}_{b}}-\sum\limits_{j,k}{{{A}_{j}}^{b}{{V}_{jk}}{{A}_{k}}^{a}{{Q}_{a}}{{Q}_{b}}}} \right)} \right) \\
  & L=\frac{1}{2}\left( \sum\limits_{a,b}{\left( \sum\limits_{j,k}{{{A}_{j}}^{b}{{T}_{jk}}{{A}_{k}}^{a}{{{\dot{Q}}}_{a}}{{{\dot{Q}}}_{b}}-\sum\limits_{j,k}{{{A}_{j}}^{b}{{V}_{jk}}{{A}_{k}}^{a}{{Q}_{a}}{{Q}_{b}}}} \right)} \right) \\
Line 336: Line 346:




:<math>{{\ddot{Q}}_{a}}+{{\omega }_{j}}^{2}{{Q}_{a}}=0\quad a=1,...,f</math>
<math>{{\ddot{Q}}_{a}}+{{\omega }_{j}}^{2}{{Q}_{a}}=0\quad a=1,...,f</math>




Line 344: Line 354:




:<math>z=l(1-\cos \phi )</math>
<math>z=l(1-\cos \phi )</math>




Line 350: Line 360:




:<math>q=s=\phi l</math>
<math>q=s=\phi l</math>






:<math>\begin{align}
<math>\begin{align}
   & T=\frac{1}{2}m{{{\dot{q}}}^{2}} \\
   & T=\frac{1}{2}m{{{\dot{q}}}^{2}} \\
  & V=mgz=mgl(1-\cos \phi )\approx \frac{1}{2}mgl{{\phi }^{2}}=\frac{1}{2}\frac{g}{l}m{{q}^{2}} \\
  & V=mgz=mgl(1-\cos \phi )\approx \frac{1}{2}mgl{{\phi }^{2}}=\frac{1}{2}\frac{g}{l}m{{q}^{2}} \\
Line 371: Line 381:




:<math>\begin{align}
<math>\begin{align}
   & {{q}_{1}}={{s}_{1}}={{\phi }_{1}}l \\
   & {{q}_{1}}={{s}_{1}}={{\phi }_{1}}l \\
  & {{q}_{2}}={{s}_{2}}={{\phi }_{1}}l \\
  & {{q}_{2}}={{s}_{2}}={{\phi }_{1}}l \\
Line 378: Line 388:




:<math>\begin{align}
<math>\begin{align}
   & T=\frac{1}{2}m({{{\dot{q}}}_{1}}^{2}+{{{\dot{q}}}_{2}}^{2}) \\
   & T=\frac{1}{2}m({{{\dot{q}}}_{1}}^{2}+{{{\dot{q}}}_{2}}^{2}) \\
  & V=mg{{z}_{1}}+mg{{z}_{2}}+\frac{1}{2}k{{({{q}_{1}}-{{q}_{2}})}^{2}}=mgl(1-\cos \frac{{{q}_{1}}}{l})+\frac{1}{2}k{{({{q}_{1}}-{{q}_{2}})}^{2}}+mgl(1-\cos \frac{{{q}_{2}}}{l}) \\
  & V=mg{{z}_{1}}+mg{{z}_{2}}+\frac{1}{2}k{{({{q}_{1}}-{{q}_{2}})}^{2}}=mgl(1-\cos \frac{{{q}_{1}}}{l})+\frac{1}{2}k{{({{q}_{1}}-{{q}_{2}})}^{2}}+mgl(1-\cos \frac{{{q}_{2}}}{l}) \\
Line 388: Line 398:




:<math>V\approx \frac{1}{2}\frac{g}{l}m{{q}_{1}}^{2}+\frac{1}{2}\frac{g}{l}m{{q}_{2}}^{2}+\frac{1}{2}k{{({{q}_{1}}-{{q}_{2}})}^{2}}=\sum\limits_{j,k=1}^{2}{{{V}_{jk}}{{q}_{j}}{{q}_{k}}\quad Forderung!}</math>
<math>V\approx \frac{1}{2}\frac{g}{l}m{{q}_{1}}^{2}+\frac{1}{2}\frac{g}{l}m{{q}_{2}}^{2}+\frac{1}{2}k{{({{q}_{1}}-{{q}_{2}})}^{2}}=\sum\limits_{j,k=1}^{2}{{{V}_{jk}}{{q}_{j}}{{q}_{k}}\quad Forderung!}</math>




Line 394: Line 404:




:<math>\begin{align}
<math>\begin{align}
   & {{\left( \frac{{{\partial }^{2}}V}{\partial {{q}_{1}}^{2}} \right)}_{0}}={{\left( \frac{{{\partial }^{2}}V}{\partial {{q}_{2}}^{2}} \right)}_{0}}=m\frac{g}{l}+k \\
   & {{\left( \frac{{{\partial }^{2}}V}{\partial {{q}_{1}}^{2}} \right)}_{0}}={{\left( \frac{{{\partial }^{2}}V}{\partial {{q}_{2}}^{2}} \right)}_{0}}=m\frac{g}{l}+k \\
  & \left( \frac{{{\partial }^{2}}V}{\partial {{q}_{1}}\partial {{q}_{2}}} \right)=mg\frac{\partial }{\partial {{q}_{1}}}(\sin \frac{{{q}_{2}}}{l})-k\frac{\partial }{\partial {{q}_{1}}}({{q}_{1}}-{{q}_{2}})=-k \\
  & \left( \frac{{{\partial }^{2}}V}{\partial {{q}_{1}}\partial {{q}_{2}}} \right)=mg\frac{\partial }{\partial {{q}_{1}}}(\sin \frac{{{q}_{2}}}{l})-k\frac{\partial }{\partial {{q}_{1}}}({{q}_{1}}-{{q}_{2}})=-k \\
Line 405: Line 415:




:<math>\begin{align}
<math>\begin{align}
   & {{T}_{lk}}=\left( \begin{matrix}
   & {{T}_{lk}}=\left( \begin{matrix}
   m & 0  \\
   m & 0  \\
Line 418: Line 428:




:<math>\begin{align}
<math>\begin{align}
   & T=\frac{1}{2}m({{{\dot{q}}}_{1}}^{2}+{{{\dot{q}}}_{2}}^{2}) \\
   & T=\frac{1}{2}m({{{\dot{q}}}_{1}}^{2}+{{{\dot{q}}}_{2}}^{2}) \\
  & V\approx \frac{1}{2}mgl{{\phi }_{1}}^{2}+\frac{1}{2}mgl{{\phi }_{2}}^{2}+\frac{1}{2}k{{({{q}_{1}}-{{q}_{2}})}^{2}}=\frac{1}{2}\frac{g}{l}m{{q}_{1}}^{2}+\frac{1}{2}\frac{g}{l}m{{q}_{2}}^{2}+\frac{1}{2}k{{({{q}_{1}}-{{q}_{2}})}^{2}} \\
  & V\approx \frac{1}{2}mgl{{\phi }_{1}}^{2}+\frac{1}{2}mgl{{\phi }_{2}}^{2}+\frac{1}{2}k{{({{q}_{1}}-{{q}_{2}})}^{2}}=\frac{1}{2}\frac{g}{l}m{{q}_{1}}^{2}+\frac{1}{2}\frac{g}{l}m{{q}_{2}}^{2}+\frac{1}{2}k{{({{q}_{1}}-{{q}_{2}})}^{2}} \\
Line 428: Line 438:




:<math>\begin{align}
<math>\begin{align}
   & m{{{\ddot{q}}}_{1}}+\frac{g}{l}m{{q}_{1}}+k({{q}_{1}}-{{q}_{2}})=0 \\
   & m{{{\ddot{q}}}_{1}}+\frac{g}{l}m{{q}_{1}}+k({{q}_{1}}-{{q}_{2}})=0 \\
  & m{{{\ddot{q}}}_{2}}+\frac{g}{l}m{{q}_{2}}-k({{q}_{1}}-{{q}_{2}})=0 \\
  & m{{{\ddot{q}}}_{2}}+\frac{g}{l}m{{q}_{2}}-k({{q}_{1}}-{{q}_{2}})=0 \\
Line 439: Line 449:




:<math>{{q}_{k}}={{A}_{k}}{{e}^{iwt}}</math>
<math>{{q}_{k}}={{A}_{k}}{{e}^{iwt}}</math>




Line 445: Line 455:




:<math>\left( \begin{matrix}
<math>\left( \begin{matrix}
   m\frac{g}{l}+k-m{{\omega }^{2}} & -k  \\
   m\frac{g}{l}+k-m{{\omega }^{2}} & -k  \\
   -k & m\frac{g}{l}+k-m{{\omega }^{2}}  \\
   -k & m\frac{g}{l}+k-m{{\omega }^{2}}  \\
Line 457: Line 467:




:<math>\begin{align}
<math>\begin{align}
   & 0=\det ({{V}_{lk}}-{{\omega }^{2}}{{T}_{lk}})={{m}^{2}}\left| \begin{matrix}
   & 0=\det ({{V}_{lk}}-{{\omega }^{2}}{{T}_{lk}})={{m}^{2}}\left| \begin{matrix}
   \frac{g}{l}+\frac{k}{m}-{{\omega }^{2}} & -\frac{k}{m}  \\
   \frac{g}{l}+\frac{k}{m}-{{\omega }^{2}} & -\frac{k}{m}  \\
Line 467: Line 477:




:<math>{{\omega }_{1,2}}^{2}=\left( \frac{k}{m}+\frac{g}{l} \right)\pm {{\left( \frac{k}{m} \right)}^{{}}}=\left\{ \begin{matrix}
<math>{{\omega }_{1,2}}^{2}=\left( \frac{k}{m}+\frac{g}{l} \right)\pm {{\left( \frac{k}{m} \right)}^{{}}}=\left\{ \begin{matrix}
   \frac{g}{l}  \\
   \frac{g}{l}  \\
   \frac{g}{l}+2\left( \frac{k}{m} \right)  \\
   \frac{g}{l}+2\left( \frac{k}{m} \right)  \\
Line 476: Line 486:




:<math>{{\omega }_{1}}=\sqrt{\frac{g}{l}}:={{\omega }_{0}}</math>
<math>{{\omega }_{1}}=\sqrt{\frac{g}{l}}:={{\omega }_{0}}</math>




Line 482: Line 492:




:<math>{{\omega }_{2}}=\sqrt{\frac{g}{l}+2\frac{k}{m}}:={{\sqrt{{{\omega }_{0}}^{2}+2{{{\tilde{\omega }}}^{2}}}}_{{}}}</math>
<math>{{\omega }_{2}}=\sqrt{\frac{g}{l}+2\frac{k}{m}}:={{\sqrt{{{\omega }_{0}}^{2}+2{{{\tilde{\omega }}}^{2}}}}_{{}}}</math>




Line 488: Line 498:




:<math>\left( m\frac{g}{l}+k-m{{\omega }_{a}}^{2} \right){{A}_{1}}^{a}-k{{A}_{2}}^{a}=0</math>
<math>\left( m\frac{g}{l}+k-m{{\omega }_{a}}^{2} \right){{A}_{1}}^{a}-k{{A}_{2}}^{a}=0</math>




Line 494: Line 504:




:<math>k{{A}_{1}}^{1}-k{{A}_{2}}^{1}=0\Rightarrow \left( \begin{matrix}
<math>k{{A}_{1}}^{1}-k{{A}_{2}}^{1}=0\Rightarrow \left( \begin{matrix}
   {{A}_{1}}^{1}  \\
   {{A}_{1}}^{1}  \\
   {{A}_{2}}^{1}  \\
   {{A}_{2}}^{1}  \\
Line 510: Line 520:




:<math>{{q}_{k}}(t)={{A}_{k}}^{1}{{Q}_{1}}+{{A}_{k}}^{2}{{Q}_{2}}</math>
<math>{{q}_{k}}(t)={{A}_{k}}^{1}{{Q}_{1}}+{{A}_{k}}^{2}{{Q}_{2}}</math>




Line 518: Line 528:




:<math>\left( \begin{matrix}
<math>\left( \begin{matrix}
   {{Q}_{1}}  \\
   {{Q}_{1}}  \\
   {{Q}_{2}}  \\
   {{Q}_{2}}  \\
Line 530: Line 540:




Mit der zu oben transponierten Matrix (Umkehrung)
Mit der zu oben transponierten Matrix ( Umkehrung)


Die Eigenvektoren sind so zu normieren, dass:
Die Eigenvektoren sind so zu normieren, dass:




:<math>\begin{align}
<math>\begin{align}
   & \sum\limits_{k,l}{{{A}_{l}}^{a}{{T}_{lk}}{{A}_{k}}^{a}=m\sum\limits_{k}{{{\left| {{A}_{k}}^{a} \right|}^{2}}}=1} \\
   & \sum\limits_{k,l}{{{A}_{l}}^{a}{{T}_{lk}}{{A}_{k}}^{a}=m\sum\limits_{k}{{{\left| {{A}_{k}}^{a} \right|}^{2}}}=1} \\
  & \Rightarrow \left( \begin{matrix}
  & \Rightarrow \left( \begin{matrix}
Line 557: Line 567:




:<math>\begin{align}
<math>\begin{align}
   & {{Q}_{1}}=\frac{1}{\sqrt{2m}}({{q}_{1}}+{{q}_{2}})\quad Schwerpunktskoordinaten \\
   & {{Q}_{1}}=\frac{1}{\sqrt{2m}}({{q}_{1}}+{{q}_{2}})\quad Schwerpunktskoordinaten \\
  & {{Q}_{2}}=\frac{1}{\sqrt{2m}}({{q}_{1}}-{{q}_{2}})\quad Relativkoordinaten \\
  & {{Q}_{2}}=\frac{1}{\sqrt{2m}}({{q}_{1}}-{{q}_{2}})\quad Relativkoordinaten \\
Line 566: Line 576:




:<math>\begin{align}
<math>\begin{align}
   & {{\omega }_{1}}=\sqrt{\frac{g}{l}} \\
   & {{\omega }_{1}}=\sqrt{\frac{g}{l}} \\
  & {{\omega }_{2}}=\sqrt{\frac{g}{l}+2\frac{k}{m}} \\
  & {{\omega }_{2}}=\sqrt{\frac{g}{l}+2\frac{k}{m}} \\
Please note that all contributions to testwiki are considered to be released under the Creative Commons Attribution (see Testwiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!
Cancel Editing help (opens in new window)