Editing Normalschwingungen

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 2: Line 2:


Anwendung: Kleine Schwingungen eines Systems von Massepunkten
Anwendung: Kleine Schwingungen eines Systems von Massepunkten
:<math>{{m}_{i}}</math>
<math>{{m}_{i}}</math>




Line 9: Line 9:
Außerdem sei das Potenzial beliebig
Außerdem sei das Potenzial beliebig


:<math>V({{\bar{r}}_{1}},{{\bar{r}}_{2}},...,{{\bar{r}}_{N}})</math>
<math>V({{\bar{r}}_{1}},{{\bar{r}}_{2}},...,{{\bar{r}}_{N}})</math>
es existiere lediglich eine stabile Ruhelage.
es existiere lediglich eine stabile Ruhelage.


Line 18: Line 18:




:<math>V({{q}_{1}},...,{{q}_{f}})=V(0,....,0)+\sum\limits_{j}{{{\left( \frac{\partial V}{\partial {{q}_{j}}} \right)}_{0}}{{q}_{j}}+\frac{1}{2}\sum\limits_{j,k}{{{\left( \frac{{{\partial }^{2}}V}{\partial {{q}_{j}}\partial {{q}_{k}}} \right)}_{0}}{{q}_{j}}{{q}_{k}}+...}}</math>
<math>V({{q}_{1}},...,{{q}_{f}})=V(0,....,0)+\sum\limits_{j}{{{\left( \frac{\partial V}{\partial {{q}_{j}}} \right)}_{0}}{{q}_{j}}+\frac{1}{2}\sum\limits_{j,k}{{{\left( \frac{{{\partial }^{2}}V}{\partial {{q}_{j}}\partial {{q}_{k}}} \right)}_{0}}{{q}_{j}}{{q}_{k}}+...}}</math>




Line 26: Line 26:




:<math>\begin{align}
<math>\begin{align}
   & V(0,....,0)=0 \\
   & V(0,....,0)=0 \\
  & \sum\limits_{j}{{{\left( \frac{\partial V}{\partial {{q}_{j}}} \right)}_{0}}{{q}_{j}}}=0\quad \left( \frac{\partial V}{\partial {{q}_{j}}} \right)=-{{Q}_{j}}=0 \\
  & \sum\limits_{j}{{{\left( \frac{\partial V}{\partial {{q}_{j}}} \right)}_{0}}{{q}_{j}}}=0\quad \left( \frac{\partial V}{\partial {{q}_{j}}} \right)=-{{Q}_{j}}=0 \\
Line 38: Line 38:




:<math>V({{q}_{1}},...,{{q}_{f}})\approx \frac{1}{2}\sum\limits_{j,k}{{{V}_{jk}}{{q}_{j}}{{q}_{k}}\ge 0}\quad \quad {{V}_{jk}}={{V}_{kj}}</math>
<math>V({{q}_{1}},...,{{q}_{f}})\approx \frac{1}{2}\sum\limits_{j,k}{{{V}_{jk}}{{q}_{j}}{{q}_{k}}\ge 0}\quad \quad {{V}_{jk}}={{V}_{kj}}</math>




Line 44: Line 44:




:<math>T=\frac{1}{2}\sum\limits_{i}{{{m}_{i}}{{{\vec{v}}}_{i}}^{2}}\ge 0</math>
<math>T=\frac{1}{2}\sum\limits_{i}{{{m}_{i}}{{{\vec{v}}}_{i}}^{2}}\ge 0</math>






:<math>\begin{align}
<math>\begin{align}
   & {{{\vec{v}}}_{i}}=\sum\limits_{j}{{}}\left( \frac{\partial {{{\vec{r}}}_{i}}}{\partial {{q}_{j}}} \right){{{\dot{q}}}_{j}} \\
   & {{{\vec{v}}}_{i}}=\sum\limits_{j}{{}}\left( \frac{\partial {{{\vec{r}}}_{i}}}{\partial {{q}_{j}}} \right){{{\dot{q}}}_{j}} \\
  & T=\frac{1}{2}\sum\limits_{i}{{{m}_{i}}}\left( \sum\limits_{j,k}{\left( \frac{\partial {{{\vec{r}}}_{i}}}{\partial {{q}_{j}}} \right)\left( \frac{\partial {{{\vec{r}}}_{i}}}{\partial {{q}_{j}}} \right)}{{{\dot{q}}}_{j}}{{{\dot{q}}}_{k}} \right)\ge 0 \\
  & T=\frac{1}{2}\sum\limits_{i}{{{m}_{i}}}\left( \sum\limits_{j,k}{\left( \frac{\partial {{{\vec{r}}}_{i}}}{\partial {{q}_{j}}} \right)\left( \frac{\partial {{{\vec{r}}}_{i}}}{\partial {{q}_{j}}} \right)}{{{\dot{q}}}_{j}}{{{\dot{q}}}_{k}} \right)\ge 0 \\
Line 63: Line 63:




:<math>\begin{align}
<math>\begin{align}
   & L=T-V=\frac{1}{2}\left( \sum\limits_{j,k}{{{T}_{jk}}}{{{\dot{q}}}_{j}}{{{\dot{q}}}_{k}}-\sum\limits_{j,k}{{{V}_{jk}}}{{q}_{j}}{{q}_{k}} \right) \\
   & L=T-V=\frac{1}{2}\left( \sum\limits_{j,k}{{{T}_{jk}}}{{{\dot{q}}}_{j}}{{{\dot{q}}}_{k}}-\sum\limits_{j,k}{{{V}_{jk}}}{{q}_{j}}{{q}_{k}} \right) \\
  & \frac{\partial L}{\partial {{{\dot{q}}}_{l}}}=\frac{1}{2}\sum\limits_{j,k}{{{T}_{jk}}}\frac{\partial }{\partial {{{\dot{q}}}_{l}}}\left( {{{\dot{q}}}_{j}}{{{\dot{q}}}_{k}} \right)=\frac{1}{2}\sum\limits_{j,k}{{{T}_{jk}}}\left( {{\delta }_{jl}}{{{\dot{q}}}_{k}}+{{\delta }_{kl}}{{{\dot{q}}}_{j}} \right)=\frac{1}{2}\sum\limits_{j,k}{{{T}_{lk}}}{{{\dot{q}}}_{k}}+{{T}_{lj}}{{{\dot{q}}}_{j}}=\sum\limits_{k}{{{T}_{lk}}}{{{\dot{q}}}_{k}}\quad mit\ {{T}_{jl}}={{T}_{lj}} \\
  & \frac{\partial L}{\partial {{{\dot{q}}}_{l}}}=\frac{1}{2}\sum\limits_{j,k}{{{T}_{jk}}}\frac{\partial }{\partial {{{\dot{q}}}_{l}}}\left( {{{\dot{q}}}_{j}}{{{\dot{q}}}_{k}} \right)=\frac{1}{2}\sum\limits_{j,k}{{{T}_{jk}}}\left( {{\delta }_{jl}}{{{\dot{q}}}_{k}}+{{\delta }_{kl}}{{{\dot{q}}}_{j}} \right)=\frac{1}{2}\sum\limits_{j,k}{{{T}_{lk}}}{{{\dot{q}}}_{k}}+{{T}_{lj}}{{{\dot{q}}}_{j}}=\sum\limits_{k}{{{T}_{lk}}}{{{\dot{q}}}_{k}}\quad mit\ {{T}_{jl}}={{T}_{lj}} \\
Line 74: Line 74:




:<math>\begin{align}
<math>\begin{align}
   & \left( r,\vartheta ,\phi  \right)=\left( {{q}_{1}},{{q}_{2}},{{q}_{3}} \right) \\
   & \left( r,\vartheta ,\phi  \right)=\left( {{q}_{1}},{{q}_{2}},{{q}_{3}} \right) \\
  & x=r\cos \phi \sin \vartheta  \\
  & x=r\cos \phi \sin \vartheta  \\
Line 83: Line 83:




:<math>\begin{align}
<math>\begin{align}
   & {{{\vec{v}}}_{{}}}=\sum\limits_{j}{{}}\left( \frac{\partial {{{\vec{r}}}_{{}}}}{\partial {{q}_{j}}} \right){{{\dot{q}}}_{j}} \\
   & {{{\vec{v}}}_{{}}}=\sum\limits_{j}{{}}\left( \frac{\partial {{{\vec{r}}}_{{}}}}{\partial {{q}_{j}}} \right){{{\dot{q}}}_{j}} \\
  &  \\
  &  \\
Line 92: Line 92:




:<math>\begin{align}
<math>\begin{align}
   & {{v}_{x}}=\frac{dx}{dt}=\frac{\partial x}{\partial r}\dot{r}+\frac{\partial x}{\partial \vartheta }\dot{\vartheta }+\frac{\partial x}{\partial \phi }\dot{\phi }=\sin \vartheta \cos \phi \dot{r}+r\cos \vartheta \cos \phi \dot{\vartheta }-r\sin \vartheta \sin \phi \dot{\phi } \\
   & {{v}_{x}}=\frac{dx}{dt}=\frac{\partial x}{\partial r}\dot{r}+\frac{\partial x}{\partial \vartheta }\dot{\vartheta }+\frac{\partial x}{\partial \phi }\dot{\phi }=\sin \vartheta \cos \phi \dot{r}+r\cos \vartheta \cos \phi \dot{\vartheta }-r\sin \vartheta \sin \phi \dot{\phi } \\
  & {{v}_{y}}=\frac{dy}{dt}=\frac{\partial y}{\partial r}\dot{r}+\frac{\partial y}{\partial \vartheta }\dot{\vartheta }+\frac{\partial y}{\partial \phi }\dot{\phi }=\sin \vartheta \sin \phi \dot{r}+r\cos \vartheta \sin \phi \dot{\vartheta }+r\sin \vartheta \cos \phi \dot{\phi } \\
  & {{v}_{y}}=\frac{dy}{dt}=\frac{\partial y}{\partial r}\dot{r}+\frac{\partial y}{\partial \vartheta }\dot{\vartheta }+\frac{\partial y}{\partial \phi }\dot{\phi }=\sin \vartheta \sin \phi \dot{r}+r\cos \vartheta \sin \phi \dot{\vartheta }+r\sin \vartheta \cos \phi \dot{\phi } \\
Line 103: Line 103:




:<math>\left( \begin{matrix}
<math>\left( \begin{matrix}
   \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \vartheta } & \frac{\partial x}{\partial \phi }  \\
   \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \vartheta } & \frac{\partial x}{\partial \phi }  \\
   \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \vartheta } & \frac{\partial y}{\partial \phi }  \\
   \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \vartheta } & \frac{\partial y}{\partial \phi }  \\
Line 115: Line 115:




:<math>\begin{align}
<math>\begin{align}
   & T=\frac{1}{2}\sum\limits_{j,k}{{{T}_{jk}}}{{{\dot{q}}}_{j}}{{{\dot{q}}}_{k}} \\
   & T=\frac{1}{2}\sum\limits_{j,k}{{{T}_{jk}}}{{{\dot{q}}}_{j}}{{{\dot{q}}}_{k}} \\
  & {{T}_{jk}}={{T}_{kj}}\approx \sum\limits_{i}{{{m}_{i}}{{\left( \frac{\partial {{{\vec{r}}}_{i}}}{\partial {{q}_{j}}} \right)}_{0}}{{\left( \frac{\partial {{{\vec{r}}}_{i}}}{\partial {{q}_{j}}} \right)}_{0}}} \\
  & {{T}_{jk}}={{T}_{kj}}\approx \sum\limits_{i}{{{m}_{i}}{{\left( \frac{\partial {{{\vec{r}}}_{i}}}{\partial {{q}_{j}}} \right)}_{0}}{{\left( \frac{\partial {{{\vec{r}}}_{i}}}{\partial {{q}_{j}}} \right)}_{0}}} \\
Line 123: Line 123:




:<math>\begin{align}
<math>\begin{align}
   & {{T}_{11}}=m\left( {{\sin }^{2}}\vartheta {{\cos }^{2}}\phi +{{\sin }^{2}}\vartheta {{\sin }^{2}}\phi +{{\cos }^{2}}\vartheta  \right)=m \\
   & {{T}_{11}}=m\left( {{\sin }^{2}}\vartheta {{\cos }^{2}}\phi +{{\sin }^{2}}\vartheta {{\sin }^{2}}\phi +{{\cos }^{2}}\vartheta  \right)=m \\
  & {{T}_{22}}=m{{r}^{2}}\left( {{\cos }^{2}}\vartheta {{\cos }^{2}}\phi +{{\cos }^{2}}\vartheta {{\sin }^{2}}\phi +{{\sin }^{2}}\vartheta  \right)=m{{r}^{2}} \\
  & {{T}_{22}}=m{{r}^{2}}\left( {{\cos }^{2}}\vartheta {{\cos }^{2}}\phi +{{\cos }^{2}}\vartheta {{\sin }^{2}}\phi +{{\sin }^{2}}\vartheta  \right)=m{{r}^{2}} \\
Line 135: Line 135:




:<math>\begin{align}
<math>\begin{align}
   & {{T}_{12}}={{T}_{21}}=mr\left( \sin \vartheta \cos \phi \cos \vartheta \cos \phi +\sin \vartheta \sin \phi \cos \vartheta \sin \phi -\sin \vartheta \cos \vartheta  \right)=0 \\
   & {{T}_{12}}={{T}_{21}}=mr\left( \sin \vartheta \cos \phi \cos \vartheta \cos \phi +\sin \vartheta \sin \phi \cos \vartheta \sin \phi -\sin \vartheta \cos \vartheta  \right)=0 \\
  & {{T}_{13}}={{T}_{31}}=0 \\
  & {{T}_{13}}={{T}_{31}}=0 \\
Line 143: Line 143:




:<math>\begin{align}
<math>\begin{align}
   & {{T}_{jk}}=\left( \begin{matrix}
   & {{T}_{jk}}=\left( \begin{matrix}
   m & 0 & 0  \\
   m & 0 & 0  \\
Line 156: Line 156:




:<math>\begin{align}
<math>\begin{align}
   & L=T-V=\frac{1}{2}\left( \sum\limits_{j,k}{{{T}_{jk}}}{{{\dot{q}}}_{j}}{{{\dot{q}}}_{k}}-\sum\limits_{j,k}{{{V}_{jk}}}{{q}_{j}}{{q}_{k}} \right) \\
   & L=T-V=\frac{1}{2}\left( \sum\limits_{j,k}{{{T}_{jk}}}{{{\dot{q}}}_{j}}{{{\dot{q}}}_{k}}-\sum\limits_{j,k}{{{V}_{jk}}}{{q}_{j}}{{q}_{k}} \right) \\
  & \frac{\partial L}{\partial {{{\dot{q}}}_{l}}}=\frac{1}{2}\sum\limits_{j,k}{{{T}_{jk}}}\frac{\partial }{\partial {{{\dot{q}}}_{l}}}\left( {{{\dot{q}}}_{j}}{{{\dot{q}}}_{k}} \right)=\frac{1}{2}\sum\limits_{j,k}{{{T}_{jk}}}\left( {{\delta }_{jl}}{{{\dot{q}}}_{k}}+{{\delta }_{kl}}{{{\dot{q}}}_{j}} \right)=\frac{1}{2}\sum\limits_{j,k}{{{T}_{lk}}}{{{\dot{q}}}_{k}}+{{T}_{lj}}{{{\dot{q}}}_{j}}=\sum\limits_{k}{{{T}_{lk}}}{{{\dot{q}}}_{k}}\quad mit\ {{T}_{jl}}={{T}_{lj}} \\
  & \frac{\partial L}{\partial {{{\dot{q}}}_{l}}}=\frac{1}{2}\sum\limits_{j,k}{{{T}_{jk}}}\frac{\partial }{\partial {{{\dot{q}}}_{l}}}\left( {{{\dot{q}}}_{j}}{{{\dot{q}}}_{k}} \right)=\frac{1}{2}\sum\limits_{j,k}{{{T}_{jk}}}\left( {{\delta }_{jl}}{{{\dot{q}}}_{k}}+{{\delta }_{kl}}{{{\dot{q}}}_{j}} \right)=\frac{1}{2}\sum\limits_{j,k}{{{T}_{lk}}}{{{\dot{q}}}_{k}}+{{T}_{lj}}{{{\dot{q}}}_{j}}=\sum\limits_{k}{{{T}_{lk}}}{{{\dot{q}}}_{k}}\quad mit\ {{T}_{jl}}={{T}_{lj}} \\
Line 170: Line 170:




:<math>\begin{align}
<math>\begin{align}
   & {{q}_{k}}(t)={{A}_{k}}{{e}^{iwt}}\quad {{A}_{k}}\in C \\
   & {{q}_{k}}(t)={{A}_{k}}{{e}^{iwt}}\quad {{A}_{k}}\in C \\
  & \sum\limits_{k}{({{V}_{lk}}-{{\omega }^{2}}{{T}_{lk}}){{A}_{k}}=0} \\
  & \sum\limits_{k}{({{V}_{lk}}-{{\omega }^{2}}{{T}_{lk}}){{A}_{k}}=0} \\
Line 183: Line 183:




:<math>\det \left( {{V}_{lk}}-{{\omega }^{2}}{{T}_{lk}} \right)=0</math>
<math>\det \left( {{V}_{lk}}-{{\omega }^{2}}{{T}_{lk}} \right)=0</math>




Line 189: Line 189:




:<math>{{V}_{lk}},{{T}_{lk}}positiv\ definit\Rightarrow {{\omega }^{2}}>0</math>
<math>{{V}_{lk}},{{T}_{lk}}positiv\ definit\Rightarrow {{\omega }^{2}}>0</math>
für alle Nullstellen des charakteristischen Polynoms.
für alle Nullstellen des charakteristischen Polynoms.


Line 195: Line 195:




:<math>\begin{align}
<math>\begin{align}
   & \sum\limits_{k}{({{V}_{lk}}-{{\omega }^{2}}{{T}_{lk}}){{A}_{k}}=0}\left| \cdot \sum\limits_{l}{{{A}_{l}}^{*}} \right. \\
   & \sum\limits_{k}{({{V}_{lk}}-{{\omega }^{2}}{{T}_{lk}}){{A}_{k}}=0}\left| \cdot \sum\limits_{l}{{{A}_{l}}^{*}} \right. \\
  & \sum\limits_{l,k}{{{V}_{lk}}{{A}_{l}}^{*}{{A}_{k}}-}{{\omega }^{2}}\sum\limits_{l,k}{{{T}_{lk}}{{A}_{l}}^{*}{{A}_{k}}}=0 \\
  & \sum\limits_{l,k}{{{V}_{lk}}{{A}_{l}}^{*}{{A}_{k}}-}{{\omega }^{2}}\sum\limits_{l,k}{{{T}_{lk}}{{A}_{l}}^{*}{{A}_{k}}}=0 \\
Line 210: Line 210:




:<math>\begin{align}
<math>\begin{align}
   & {{q}_{k}}(t)={{A}_{k}}{{e}^{iwt}}\quad {{A}_{k}}\in C \\
   & {{q}_{k}}(t)={{A}_{k}}{{e}^{iwt}}\quad {{A}_{k}}\in C \\
  & \sum\limits_{k}{({{V}_{lk}}-{{\omega }^{2}}{{T}_{lk}}){{A}_{k}}=0} \\
  & \sum\limits_{k}{({{V}_{lk}}-{{\omega }^{2}}{{T}_{lk}}){{A}_{k}}=0} \\
Line 217: Line 217:


sind die Eigenfrequenzen
sind die Eigenfrequenzen
:<math>{{\omega }^{2}}_{a}\quad a=1,...,f</math>
<math>{{\omega }^{2}}_{a}\quad a=1,...,f</math>




und die Eigenvektoren
und die Eigenvektoren
:<math>{{A}_{k}}^{(a)}\quad a=1,...,f</math>
<math>{{A}_{k}}^{(a)}\quad a=1,...,f</math>




Line 229: Line 229:




:<math>\begin{align}
<math>\begin{align}
   & {{q}_{k}}(t)=\operatorname{Re}\left\{ \sum\limits_{a=1}^{f}{{{C}_{a}}}{{A}_{k}}^{(a)}{{e}^{i{{w}_{a}}t}} \right\} \\
   & {{q}_{k}}(t)=\operatorname{Re}\left\{ \sum\limits_{a=1}^{f}{{{C}_{a}}}{{A}_{k}}^{(a)}{{e}^{i{{w}_{a}}t}} \right\} \\
  &  \\
  &  \\
\end{align}</math> Die <math>{{C}_{a}}</math>
\end{align}</math> Die <math>{{C}_{a}}</math>
werden durch die Anfangsbedingungen
werden durch die Anfangsbedingungen
:<math>{{q}_{k}}(0),{{\dot{q}}_{k}}(0)</math>
<math>{{q}_{k}}(0),{{\dot{q}}_{k}}(0)</math>
bestimmt
bestimmt


Line 244: Line 244:


Seien diese neuen Koordinaten
Seien diese neuen Koordinaten
:<math>{{Q}_{j}}</math>
<math>{{Q}_{j}}</math>
so soll gelten:
so soll gelten:




:<math>{{\ddot{Q}}_{j}}+{{\omega }_{j}}^{2}{{Q}_{j}}=0\quad j=1,...,f</math>
<math>{{\ddot{Q}}_{j}}+{{\omega }_{j}}^{2}{{Q}_{j}}=0\quad j=1,...,f</math>




Line 256: Line 256:




:<math>{{A}_{k}}^{(a)}</math>
<math>{{A}_{k}}^{(a)}</math>
  eingesetzt. In diesen müssen sich dann die generalisierten Koordinaten mit den {{FB|Normalkoordinaten}} als Entwicklungskoeffizienten darstellen lassen:
  eingesetzt. In diesen müssen sich dann die generalisierten Koordinaten mit den {{FB|Normalkoordinaten}} als Entwicklungskoeffizienten darstellen lassen:




:<math>\begin{align}
<math>\begin{align}
   & {{q}_{k}}(t)=\sum\limits_{a=1}^{f}{{}}{{A}_{k}}^{(a)}{{Q}_{a}} \\
   & {{q}_{k}}(t)=\sum\limits_{a=1}^{f}{{}}{{A}_{k}}^{(a)}{{Q}_{a}} \\
  &  \\
  &  \\
Line 270: Line 270:




:<math>\vec{q}=A\vec{Q}\quad mit\ \vec{q},\vec{Q}\in {{R}^{f}}</math>
<math>\vec{q}=A\vec{Q}\quad mit\ \vec{q},\vec{Q}\in {{R}^{f}}</math>




Line 280: Line 280:




:<math>\begin{align}
<math>\begin{align}
   & \sum\limits_{k}{({{V}_{lk}}-{{\omega }_{a}}^{2}{{T}_{lk}}){{A}_{k}}^{a}=0}\left| \cdot \sum\limits_{l}{{{A}_{l}}^{b}} \right. \\
   & \sum\limits_{k}{({{V}_{lk}}-{{\omega }_{a}}^{2}{{T}_{lk}}){{A}_{k}}^{a}=0}\left| \cdot \sum\limits_{l}{{{A}_{l}}^{b}} \right. \\
  & \sum\limits_{l}{({{V}_{kl}}-{{\omega }_{b}}^{2}{{T}_{kl}}){{A}_{l}}^{b}=0\left| \cdot \sum\limits_{k}{{{A}_{k}}^{b}} \right.} \\
  & \sum\limits_{l}{({{V}_{kl}}-{{\omega }_{b}}^{2}{{T}_{kl}}){{A}_{l}}^{b}=0\left| \cdot \sum\limits_{k}{{{A}_{k}}^{b}} \right.} \\
Line 287: Line 287:




:<math>\begin{align}
<math>\begin{align}
   & \sum\limits_{k,l}{{{A}_{l}}^{b}({{V}_{lk}}-{{V}_{kl}}){{A}_{k}}^{a}-{{A}_{l}}^{b}({{\omega }_{a}}^{2}{{T}_{lk}}-{{\omega }_{b}}^{2}{{T}_{kl}}){{A}_{k}}^{a}}=0 \\
   & \sum\limits_{k,l}{{{A}_{l}}^{b}({{V}_{lk}}-{{V}_{kl}}){{A}_{k}}^{a}-{{A}_{l}}^{b}({{\omega }_{a}}^{2}{{T}_{lk}}-{{\omega }_{b}}^{2}{{T}_{kl}}){{A}_{k}}^{a}}=0 \\
  & {{V}_{lk}}={{V}_{kl}} \\
  & {{V}_{lk}}={{V}_{kl}} \\
Line 297: Line 297:




:<math>{{\omega }_{a}}^{2}-{{\omega }_{b}}^{2}\ne 0</math>
<math>{{\omega }_{a}}^{2}-{{\omega }_{b}}^{2}\ne 0</math>
Die Eigenwerte sind nicht entartet, natürlich für verschiedene a/b
Die Eigenwerte sind nicht entartet, natürlich für verschiedene a/b


Line 303: Line 303:




:<math>\sum\limits_{k,l}{{}}{{A}_{l}}^{b}{{T}_{kl}}{{A}_{k}}^{a}={{\delta }_{ab}}</math>
<math>\sum\limits_{k,l}{{}}{{A}_{l}}^{b}{{T}_{kl}}{{A}_{k}}^{a}={{\delta }_{ab}}</math>




Line 313: Line 313:




:<math>\sum\limits_{k}{({{V}_{lk}}-{{\omega }_{a}}^{2}{{T}_{lk}}){{A}_{k}}^{a}=0}\left| \cdot \sum\limits_{l}{{{A}_{l}}^{b}} \right.</math> dass <math>\begin{align}
<math>\sum\limits_{k}{({{V}_{lk}}-{{\omega }_{a}}^{2}{{T}_{lk}}){{A}_{k}}^{a}=0}\left| \cdot \sum\limits_{l}{{{A}_{l}}^{b}} \right.</math> dass <math>\begin{align}
   & \sum\limits_{k,l}{({{A}_{l}}^{b}{{V}_{lk}}-{{\omega }_{a}}^{2}{{A}_{l}}^{b}{{T}_{lk}}){{A}_{k}}^{a}=0} \\
   & \sum\limits_{k,l}{({{A}_{l}}^{b}{{V}_{lk}}-{{\omega }_{a}}^{2}{{A}_{l}}^{b}{{T}_{lk}}){{A}_{k}}^{a}=0} \\
  & \sum\limits_{k,l}{({{A}_{l}}^{b}{{V}_{lk}}{{A}_{k}}^{a})=\sum\limits_{k,l}{{{\omega }_{a}}^{2}{{A}_{l}}^{b}{{T}_{lk}}{{A}_{k}}^{a}}}={{\omega }_{a}}^{2}{{\delta }_{ab}} \\
  & \sum\limits_{k,l}{({{A}_{l}}^{b}{{V}_{lk}}{{A}_{k}}^{a})=\sum\limits_{k,l}{{{\omega }_{a}}^{2}{{A}_{l}}^{b}{{T}_{lk}}{{A}_{k}}^{a}}}={{\omega }_{a}}^{2}{{\delta }_{ab}} \\
Line 324: Line 324:




:<math>\begin{align}
<math>\begin{align}
   & L=T-V=\frac{1}{2}\left( \sum\limits_{j,k}{{{T}_{jk}}}{{{\dot{q}}}_{j}}{{{\dot{q}}}_{k}}-\sum\limits_{j,k}{{{V}_{jk}}}{{q}_{j}}{{q}_{k}} \right) \\
   & L=T-V=\frac{1}{2}\left( \sum\limits_{j,k}{{{T}_{jk}}}{{{\dot{q}}}_{j}}{{{\dot{q}}}_{k}}-\sum\limits_{j,k}{{{V}_{jk}}}{{q}_{j}}{{q}_{k}} \right) \\
  & L=\frac{1}{2}\left( \sum\limits_{a,b}{\left( \sum\limits_{j,k}{{{A}_{j}}^{b}{{T}_{jk}}{{A}_{k}}^{a}{{{\dot{Q}}}_{a}}{{{\dot{Q}}}_{b}}-\sum\limits_{j,k}{{{A}_{j}}^{b}{{V}_{jk}}{{A}_{k}}^{a}{{Q}_{a}}{{Q}_{b}}}} \right)} \right) \\
  & L=\frac{1}{2}\left( \sum\limits_{a,b}{\left( \sum\limits_{j,k}{{{A}_{j}}^{b}{{T}_{jk}}{{A}_{k}}^{a}{{{\dot{Q}}}_{a}}{{{\dot{Q}}}_{b}}-\sum\limits_{j,k}{{{A}_{j}}^{b}{{V}_{jk}}{{A}_{k}}^{a}{{Q}_{a}}{{Q}_{b}}}} \right)} \right) \\
Line 336: Line 336:




:<math>{{\ddot{Q}}_{a}}+{{\omega }_{j}}^{2}{{Q}_{a}}=0\quad a=1,...,f</math>
<math>{{\ddot{Q}}_{a}}+{{\omega }_{j}}^{2}{{Q}_{a}}=0\quad a=1,...,f</math>




Line 344: Line 344:




:<math>z=l(1-\cos \phi )</math>
<math>z=l(1-\cos \phi )</math>




Line 350: Line 350:




:<math>q=s=\phi l</math>
<math>q=s=\phi l</math>






:<math>\begin{align}
<math>\begin{align}
   & T=\frac{1}{2}m{{{\dot{q}}}^{2}} \\
   & T=\frac{1}{2}m{{{\dot{q}}}^{2}} \\
  & V=mgz=mgl(1-\cos \phi )\approx \frac{1}{2}mgl{{\phi }^{2}}=\frac{1}{2}\frac{g}{l}m{{q}^{2}} \\
  & V=mgz=mgl(1-\cos \phi )\approx \frac{1}{2}mgl{{\phi }^{2}}=\frac{1}{2}\frac{g}{l}m{{q}^{2}} \\
Line 371: Line 371:




:<math>\begin{align}
<math>\begin{align}
   & {{q}_{1}}={{s}_{1}}={{\phi }_{1}}l \\
   & {{q}_{1}}={{s}_{1}}={{\phi }_{1}}l \\
  & {{q}_{2}}={{s}_{2}}={{\phi }_{1}}l \\
  & {{q}_{2}}={{s}_{2}}={{\phi }_{1}}l \\
Line 378: Line 378:




:<math>\begin{align}
<math>\begin{align}
   & T=\frac{1}{2}m({{{\dot{q}}}_{1}}^{2}+{{{\dot{q}}}_{2}}^{2}) \\
   & T=\frac{1}{2}m({{{\dot{q}}}_{1}}^{2}+{{{\dot{q}}}_{2}}^{2}) \\
  & V=mg{{z}_{1}}+mg{{z}_{2}}+\frac{1}{2}k{{({{q}_{1}}-{{q}_{2}})}^{2}}=mgl(1-\cos \frac{{{q}_{1}}}{l})+\frac{1}{2}k{{({{q}_{1}}-{{q}_{2}})}^{2}}+mgl(1-\cos \frac{{{q}_{2}}}{l}) \\
  & V=mg{{z}_{1}}+mg{{z}_{2}}+\frac{1}{2}k{{({{q}_{1}}-{{q}_{2}})}^{2}}=mgl(1-\cos \frac{{{q}_{1}}}{l})+\frac{1}{2}k{{({{q}_{1}}-{{q}_{2}})}^{2}}+mgl(1-\cos \frac{{{q}_{2}}}{l}) \\
Line 388: Line 388:




:<math>V\approx \frac{1}{2}\frac{g}{l}m{{q}_{1}}^{2}+\frac{1}{2}\frac{g}{l}m{{q}_{2}}^{2}+\frac{1}{2}k{{({{q}_{1}}-{{q}_{2}})}^{2}}=\sum\limits_{j,k=1}^{2}{{{V}_{jk}}{{q}_{j}}{{q}_{k}}\quad Forderung!}</math>
<math>V\approx \frac{1}{2}\frac{g}{l}m{{q}_{1}}^{2}+\frac{1}{2}\frac{g}{l}m{{q}_{2}}^{2}+\frac{1}{2}k{{({{q}_{1}}-{{q}_{2}})}^{2}}=\sum\limits_{j,k=1}^{2}{{{V}_{jk}}{{q}_{j}}{{q}_{k}}\quad Forderung!}</math>




Line 394: Line 394:




:<math>\begin{align}
<math>\begin{align}
   & {{\left( \frac{{{\partial }^{2}}V}{\partial {{q}_{1}}^{2}} \right)}_{0}}={{\left( \frac{{{\partial }^{2}}V}{\partial {{q}_{2}}^{2}} \right)}_{0}}=m\frac{g}{l}+k \\
   & {{\left( \frac{{{\partial }^{2}}V}{\partial {{q}_{1}}^{2}} \right)}_{0}}={{\left( \frac{{{\partial }^{2}}V}{\partial {{q}_{2}}^{2}} \right)}_{0}}=m\frac{g}{l}+k \\
  & \left( \frac{{{\partial }^{2}}V}{\partial {{q}_{1}}\partial {{q}_{2}}} \right)=mg\frac{\partial }{\partial {{q}_{1}}}(\sin \frac{{{q}_{2}}}{l})-k\frac{\partial }{\partial {{q}_{1}}}({{q}_{1}}-{{q}_{2}})=-k \\
  & \left( \frac{{{\partial }^{2}}V}{\partial {{q}_{1}}\partial {{q}_{2}}} \right)=mg\frac{\partial }{\partial {{q}_{1}}}(\sin \frac{{{q}_{2}}}{l})-k\frac{\partial }{\partial {{q}_{1}}}({{q}_{1}}-{{q}_{2}})=-k \\
Line 405: Line 405:




:<math>\begin{align}
<math>\begin{align}
   & {{T}_{lk}}=\left( \begin{matrix}
   & {{T}_{lk}}=\left( \begin{matrix}
   m & 0  \\
   m & 0  \\
Line 418: Line 418:




:<math>\begin{align}
<math>\begin{align}
   & T=\frac{1}{2}m({{{\dot{q}}}_{1}}^{2}+{{{\dot{q}}}_{2}}^{2}) \\
   & T=\frac{1}{2}m({{{\dot{q}}}_{1}}^{2}+{{{\dot{q}}}_{2}}^{2}) \\
  & V\approx \frac{1}{2}mgl{{\phi }_{1}}^{2}+\frac{1}{2}mgl{{\phi }_{2}}^{2}+\frac{1}{2}k{{({{q}_{1}}-{{q}_{2}})}^{2}}=\frac{1}{2}\frac{g}{l}m{{q}_{1}}^{2}+\frac{1}{2}\frac{g}{l}m{{q}_{2}}^{2}+\frac{1}{2}k{{({{q}_{1}}-{{q}_{2}})}^{2}} \\
  & V\approx \frac{1}{2}mgl{{\phi }_{1}}^{2}+\frac{1}{2}mgl{{\phi }_{2}}^{2}+\frac{1}{2}k{{({{q}_{1}}-{{q}_{2}})}^{2}}=\frac{1}{2}\frac{g}{l}m{{q}_{1}}^{2}+\frac{1}{2}\frac{g}{l}m{{q}_{2}}^{2}+\frac{1}{2}k{{({{q}_{1}}-{{q}_{2}})}^{2}} \\
Line 428: Line 428:




:<math>\begin{align}
<math>\begin{align}
   & m{{{\ddot{q}}}_{1}}+\frac{g}{l}m{{q}_{1}}+k({{q}_{1}}-{{q}_{2}})=0 \\
   & m{{{\ddot{q}}}_{1}}+\frac{g}{l}m{{q}_{1}}+k({{q}_{1}}-{{q}_{2}})=0 \\
  & m{{{\ddot{q}}}_{2}}+\frac{g}{l}m{{q}_{2}}-k({{q}_{1}}-{{q}_{2}})=0 \\
  & m{{{\ddot{q}}}_{2}}+\frac{g}{l}m{{q}_{2}}-k({{q}_{1}}-{{q}_{2}})=0 \\
Line 439: Line 439:




:<math>{{q}_{k}}={{A}_{k}}{{e}^{iwt}}</math>
<math>{{q}_{k}}={{A}_{k}}{{e}^{iwt}}</math>




Line 445: Line 445:




:<math>\left( \begin{matrix}
<math>\left( \begin{matrix}
   m\frac{g}{l}+k-m{{\omega }^{2}} & -k  \\
   m\frac{g}{l}+k-m{{\omega }^{2}} & -k  \\
   -k & m\frac{g}{l}+k-m{{\omega }^{2}}  \\
   -k & m\frac{g}{l}+k-m{{\omega }^{2}}  \\
Line 457: Line 457:




:<math>\begin{align}
<math>\begin{align}
   & 0=\det ({{V}_{lk}}-{{\omega }^{2}}{{T}_{lk}})={{m}^{2}}\left| \begin{matrix}
   & 0=\det ({{V}_{lk}}-{{\omega }^{2}}{{T}_{lk}})={{m}^{2}}\left| \begin{matrix}
   \frac{g}{l}+\frac{k}{m}-{{\omega }^{2}} & -\frac{k}{m}  \\
   \frac{g}{l}+\frac{k}{m}-{{\omega }^{2}} & -\frac{k}{m}  \\
Line 467: Line 467:




:<math>{{\omega }_{1,2}}^{2}=\left( \frac{k}{m}+\frac{g}{l} \right)\pm {{\left( \frac{k}{m} \right)}^{{}}}=\left\{ \begin{matrix}
<math>{{\omega }_{1,2}}^{2}=\left( \frac{k}{m}+\frac{g}{l} \right)\pm {{\left( \frac{k}{m} \right)}^{{}}}=\left\{ \begin{matrix}
   \frac{g}{l}  \\
   \frac{g}{l}  \\
   \frac{g}{l}+2\left( \frac{k}{m} \right)  \\
   \frac{g}{l}+2\left( \frac{k}{m} \right)  \\
Line 476: Line 476:




:<math>{{\omega }_{1}}=\sqrt{\frac{g}{l}}:={{\omega }_{0}}</math>
<math>{{\omega }_{1}}=\sqrt{\frac{g}{l}}:={{\omega }_{0}}</math>




Line 482: Line 482:




:<math>{{\omega }_{2}}=\sqrt{\frac{g}{l}+2\frac{k}{m}}:={{\sqrt{{{\omega }_{0}}^{2}+2{{{\tilde{\omega }}}^{2}}}}_{{}}}</math>
<math>{{\omega }_{2}}=\sqrt{\frac{g}{l}+2\frac{k}{m}}:={{\sqrt{{{\omega }_{0}}^{2}+2{{{\tilde{\omega }}}^{2}}}}_{{}}}</math>




Line 488: Line 488:




:<math>\left( m\frac{g}{l}+k-m{{\omega }_{a}}^{2} \right){{A}_{1}}^{a}-k{{A}_{2}}^{a}=0</math>
<math>\left( m\frac{g}{l}+k-m{{\omega }_{a}}^{2} \right){{A}_{1}}^{a}-k{{A}_{2}}^{a}=0</math>




Line 494: Line 494:




:<math>k{{A}_{1}}^{1}-k{{A}_{2}}^{1}=0\Rightarrow \left( \begin{matrix}
<math>k{{A}_{1}}^{1}-k{{A}_{2}}^{1}=0\Rightarrow \left( \begin{matrix}
   {{A}_{1}}^{1}  \\
   {{A}_{1}}^{1}  \\
   {{A}_{2}}^{1}  \\
   {{A}_{2}}^{1}  \\
Line 510: Line 510:




:<math>{{q}_{k}}(t)={{A}_{k}}^{1}{{Q}_{1}}+{{A}_{k}}^{2}{{Q}_{2}}</math>
<math>{{q}_{k}}(t)={{A}_{k}}^{1}{{Q}_{1}}+{{A}_{k}}^{2}{{Q}_{2}}</math>




Line 518: Line 518:




:<math>\left( \begin{matrix}
<math>\left( \begin{matrix}
   {{Q}_{1}}  \\
   {{Q}_{1}}  \\
   {{Q}_{2}}  \\
   {{Q}_{2}}  \\
Line 535: Line 535:




:<math>\begin{align}
<math>\begin{align}
   & \sum\limits_{k,l}{{{A}_{l}}^{a}{{T}_{lk}}{{A}_{k}}^{a}=m\sum\limits_{k}{{{\left| {{A}_{k}}^{a} \right|}^{2}}}=1} \\
   & \sum\limits_{k,l}{{{A}_{l}}^{a}{{T}_{lk}}{{A}_{k}}^{a}=m\sum\limits_{k}{{{\left| {{A}_{k}}^{a} \right|}^{2}}}=1} \\
  & \Rightarrow \left( \begin{matrix}
  & \Rightarrow \left( \begin{matrix}
Line 557: Line 557:




:<math>\begin{align}
<math>\begin{align}
   & {{Q}_{1}}=\frac{1}{\sqrt{2m}}({{q}_{1}}+{{q}_{2}})\quad Schwerpunktskoordinaten \\
   & {{Q}_{1}}=\frac{1}{\sqrt{2m}}({{q}_{1}}+{{q}_{2}})\quad Schwerpunktskoordinaten \\
  & {{Q}_{2}}=\frac{1}{\sqrt{2m}}({{q}_{1}}-{{q}_{2}})\quad Relativkoordinaten \\
  & {{Q}_{2}}=\frac{1}{\sqrt{2m}}({{q}_{1}}-{{q}_{2}})\quad Relativkoordinaten \\
Line 566: Line 566:




:<math>\begin{align}
<math>\begin{align}
   & {{\omega }_{1}}=\sqrt{\frac{g}{l}} \\
   & {{\omega }_{1}}=\sqrt{\frac{g}{l}} \\
  & {{\omega }_{2}}=\sqrt{\frac{g}{l}+2\frac{k}{m}} \\
  & {{\omega }_{2}}=\sqrt{\frac{g}{l}+2\frac{k}{m}} \\
Please note that all contributions to testwiki are considered to be released under the Creative Commons Attribution (see Testwiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!
Cancel Editing help (opens in new window)