Editing Master Gleichung

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 13: Line 13:
* Vor Rechts ins System <math>{}_{S}^{R}{{H}_{I}}</math>
* Vor Rechts ins System <math>{}_{S}^{R}{{H}_{I}}</math>
* Vom System nach Links <math>{}_{L}^{S}{{H}_{I}}</math>
* Vom System nach Links <math>{}_{L}^{S}{{H}_{I}}</math>
* Vom System nach Rechts <math>{}_{R}^{S}{{H}_{I}}</math> mit <math>{}_{S}^{X}{{H}_{I}}=\sum\limits_{k,i}{{}^{X}{{V}_{k}}^{X}a_{k}^{\dagger }{{e}_{i}}}</math> und <math>{}_{X}^{S}{{H}_{I}}=\sum\limits_{k,i}{{}^{X}{{V}_{k}}^{X}{{a}_{k}}e_{i}^{\dagger }}</math>
* Vom System nach Rechts <math>{}_{R}^{S}{{H}_{I}}</math>
mit
<math>{}_{S}^{X}{{H}_{I}}=\sum\limits_{k,i}{{}^{X}{{V}_{k}}^{X}a_{k}^{\dagger }{{e}_{i}}}</math>
und
<math>{}_{X}^{S}{{H}_{I}}=\sum\limits_{k,i}{{}^{X}{{V}_{k}}^{X}{{a}_{k}}e_{i}^{\dagger }}</math>


:<math>{{e}_{i}}</math> erzeugt ein Electron im System mit Energieniveau i.
<math>{{e}_{i}}</math> erzeugt ein Electron im System mit Energieniveau i.
:<math>e_{i}^{\dagger }</math> vernichtet ...
<math>e_{i}^{\dagger }</math> vernichtet ...


==Transformation ins WW-Bild==
==Transformation ins WW-Bild==
Operator ins WWBild
Operator ins WWBild


:<math>\tilde{A}\left( t \right):=U_{0}^{\dagger }A{{U}_{0}}</math>
<math>\tilde{A}\left( t \right):=U_{0}^{\dagger }A{{U}_{0}}</math>
mit <math>{{U}_{0}}=\exp \left( -\mathfrak{i}{{H}_{0}}t \right)</math>
mit <math>{{U}_{0}}=\exp \left( -\mathfrak{i}{{H}_{0}}t \right)</math>
und <math>{{H}_{0}}={{H}_{S}}+{{H}_{B}}</math>
und <math>{{H}_{0}}={{H}_{S}}+{{H}_{B}}</math>


Starte von [[Liouville-von-Neumann-Gleichung]]
Starte von [[Liouville-von-Neumann-Gleichung]]
:<math>
<math>
\dot \rho  =  - \mathfrak{i} \left[ {H,\rho } \right]</math>
\dot \rho  =  - \mathfrak{i} \left[ {H,\rho } \right]</math>


mit der Lösung
mit der Lösung


:<math>\rho \left( t \right)={{U}^{\dagger }}{{\rho }_{0}}U</math>
<math>\rho \left( t \right)={{U}^{\dagger }}{{\rho }_{0}}U</math>


mit <math>U=\exp \left( -\mathfrak{i}Ht \right)</math>
mit <math>U=\exp \left( -\mathfrak{i}Ht \right)</math>
Line 37: Line 41:
Beweis
Beweis


:<math>{{\partial }_{t}}U=-\mathfrak{i}HU</math> sowie <math>{{\partial }_{t}}{{U}^{\dagger }}=\mathfrak{i}HU</math>
<math>{{\partial }_{t}}U=-\mathfrak{i}HU</math>
 
sowie
 
<math>{{\partial }_{t}}{{U}^{\dagger }}=\mathfrak{i}HU</math>


Dann ist
Dann ist
:<math>{{d}_{t}}\rho =\underbrace{-\mathfrak{i}HU{{\rho }_{0}}{{U}^{\dagger }}+U{{\rho }_{0}}\mathfrak{i}H{{U}^{\dagger }}}_{-\mathfrak{i}\left[ H,\rho  \right]}+\underbrace{U\left( {{\partial }_{t}}{{\rho }_{0}} \right){{U}^{\dagger }}}_{0}</math>
<math>{{d}_{t}}\rho =\underbrace{-\mathfrak{i}HU{{\rho }_{0}}{{U}^{\dagger }}+U{{\rho }_{0}}\mathfrak{i}H{{U}^{\dagger }}}_{-\mathfrak{i}\left[ H,\rho  \right]}+\underbrace{U\left( {{\partial }_{t}}{{\rho }_{0}} \right){{U}^{\dagger }}}_{0}</math>


beweis ende
beweis ende
Line 50: Line 58:




 
<math>\begin{align}
:<math>\begin{align}
   & {{d}_{t}}\tilde{\rho }={{d}_{t}}\left( U_{0}^{\dagger }\rho {{U}_{0}} \right) \\  
   & {{d}_{t}}\tilde{\rho }={{d}_{t}}\left( U_{0}^{\dagger }\rho {{U}_{0}} \right) \\
  & =\mathfrak{i}{{H}_{0}}U_{0}^{\dagger }\rho {{U}_{0}}-iU_{0}^{\dagger }\rho {{H}_{0}}{{U}_{0}}+U_{0}^{\dagger }{{d}_{t}}\left( \rho  \right){{U}_{0}} \\  
  & =\mathfrak{i}{{H}_{0}}U_{0}^{\dagger }\rho {{U}_{0}}-iU_{0}^{\dagger }\rho {{H}_{0}}{{U}_{0}}+U_{0}^{\dagger }{{d}_{t}}\left( \rho  \right){{U}_{0}} \\
  & =\mathfrak{i}\left[ {{H}_{0}},\tilde{\rho } \right]-\mathfrak{i}U_{0}^{\dagger }\left[ H,\rho  \right]{{U}_{0}} \\  
  & =\mathfrak{i}\left[ {{H}_{0}},\tilde{\rho } \right]-\mathfrak{i}U_{0}^{\dagger }\left[ H,\rho  \right]{{U}_{0}} \\
  & =\mathfrak{i}\left[ {{H}_{0}},\tilde{\rho } \right]-\mathfrak{i}U_{0}^{\dagger }\left[ {{H}_{0}}+{{H}_{SB}},\rho  \right]{{U}_{0}} \\  
  & =\mathfrak{i}\left[ {{H}_{0}},\tilde{\rho } \right]-\mathfrak{i}U_{0}^{\dagger }\left[ {{H}_{0}}+{{H}_{I}},\rho  \right]{{U}_{0}} \\
  & =\mathfrak{i}\left[ {{H}_{0}},\tilde{\rho } \right]-\mathfrak{i}\left[ {{H}_{0}},\tilde{\rho } \right]-\mathfrak{i}U_{0}^{\dagger }\left[ {{H}_{SB}},\rho  \right]{{U}_{0}} \\  
  & =\mathfrak{i}\left[ {{H}_{0}},\tilde{\rho } \right]-\mathfrak{i}\left[ {{H}_{0}},\tilde{\rho } \right]-\mathfrak{i}U_{0}^{\dagger }\left[ {{H}_{I}},\rho  \right]{{U}_{0}} \\
  & =-\mathfrak{i}\left[ {{{\tilde{H}}}_{SB}},\tilde{\rho } \right] \\  
  & =-\mathfrak{i}\left[ {{{\tilde{H}}}_{I}},\tilde{\rho } \right] \\
\end{align}</math>
===Lösung===
Integrieren
:<math>\tilde{\rho}=\rho_0 - \mathfrak{i} \int_0^t [\tilde{H_I},\tilde{\rho}]\,dt'</math>
auf rechter Seite einsetzen
 
:<math>\begin{align}
  & {{d}_{t}}\tilde{\rho }=-\mathfrak{i}\left[ {{{\tilde{H}}}_{I}},{{\rho }_{0}}-\mathfrak{i}\int_{0}^{t}{[{{{\tilde{H}}}_{I}},\tilde{\rho }]}\,d{t}' \right] \\
& =-\mathfrak{i}\left[ {{{\tilde{H}}}_{I}},{{\rho }_{0}} \right]-\left[ {{{\tilde{H}}}_{I}},\int_{0}^{t}{[{{{\tilde{H}}}_{I}},\tilde{\rho }]}\,d{t}' \right] \\
& =-\mathfrak{i}\left[ {{{\tilde{H}}}_{I}},{{\rho }_{0}} \right]-\int_{0}^{t}{\left[ {{{\tilde{H}}}_{I}},\left[ {{{\tilde{H}}}_{I}},\,\tilde{\rho } \right] \right]}d{t}'
\end{align}</math>
==System Dichteoperator==
Der Dichteoperator des Systems ist die Spur über das Bad
 
:<math>{{\rho }_{S}}={{\operatorname{Tr}}_{B}}\left[ \rho  \right]</math>
 
 
:<math>{{{\tilde{\rho }}}_{S}}=U_{S}^{\dagger }{{\rho }_{S}}{{U}_{S}}</math>
 
 
:<math>{{U}_{S}}=\exp \left( -\mathsf{\mathfrak{i}}{{H}_{S}}t \right)</math>
 
damit folgt für
:<math>\begin{align}
  & {{d}_{t}}\tilde{\rho_S }=-\mathfrak{i} \operatorname{Tr}_B \left[ {{{\tilde{H}}}_{I}},{{\rho }_{0}} \right]-\int_{0}^{t}{\operatorname{Tr}_B  \left[ {{{\tilde{H}}}_{I}},\left[ {{{\tilde{H}}}_{I}},\,\tilde{\rho } \right] \right]}d{t}'
\end{align}</math>
\end{align}</math>
==Annahmen==
* WW zur Zeit t=0 eingeschaltet
* no korrelation beteween System and Bath at t=0
-->
:<math>{{\tilde{\rho }}_{0}}={{\rho }_{0}}={{\rho }_{S,0}}{{R}_{B,0}}</math>
* Kopplung Reservoiroperatoren ans System in Zustand R_0 liefern keinen Beitrag.
-->
:<math>{{\operatorname{Tr}}_{S}}\left[ {{{\tilde{H}}}_{I}}{{R}_{B,0}} \right]=0\Rightarrow \left[ {{{\tilde{H}}}_{I}},{{\rho }_{0}} \right]=0</math>
*Dichtematrix zu t=0 Sperabel
*Schwache Kopplung zwischen System und Bad H_I
*Systemgröße von B größer als S daher B nicht beeinflusst
:<math>\tilde{\rho }={{{\tilde{\rho }}}_{S,0}}{{R}_{B,0}}+O\left( {{H}_{I}} \right)</math>
===Bornsche Näherung===
* Jetzt vernachlässigen von Termen mit Ordnung von H_I>2
:<math>{{d}_{t}}{{{\tilde{\rho }}}_{S}}=-\int_{0}^{t}{{{\operatorname{Tr}}_{B}}\left[ {{{\tilde{H}}}_{I}},\left[ \tilde{H}{{'}_{I}},\,\tilde{\rho }{{'}_{S}}{{R}_{B,0}} \right] \right]}d{t}'</math>
===Markov Näherung===
* Zukunft hängt nur von aktuellem Zustand ab
:<math>{{\rho }_{S}}=\rho {{'}_{S}}</math>
[[Kategorie:Thermodynamik]]
Please note that all contributions to testwiki are considered to be released under the Creative Commons Attribution (see Testwiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!
Cancel Editing help (opens in new window)