Editing
Magnetostatische Feldgleichungen
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
<noinclude>{{Scripthinweis|Elektrodynamik|2|3}}</noinclude> Sie gelten auch in {{FB|quasistaischer Näherung}}: Die zeitliche Änderung muss viel kleiner sein als die räumliche!! Mit dem {{FB|Vektorpotenzial}} :<math>\bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|}</math> Welches nicht eindeutig ist, sondern beliebig gemäß :<math>\bar{A}(\bar{r})\to \bar{A}+\nabla \Psi </math> umgeeicht werden kann.(<math>\Psi (\bar{r})</math> beliebig möglich, da <math>\nabla \times \nabla \Psi =0</math>) Mit diesem Vektorpotenzial also kann man schreiben: :<math>\bar{B}=rot\bar{A}(\bar{r})=\nabla \times \frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|}</math> Beweis: :<math>\begin{align} & rot\bar{A}(\bar{r})=\nabla \times \frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|}=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\nabla }_{r}}\frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|}\times \bar{j}(\bar{r}\acute{\ }) \\ & {{\nabla }_{r}}\frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|}=-\frac{\bar{r}-\bar{r}\acute{\ }}{{{\left| \bar{r}-\bar{r}\acute{\ } \right|}^{3}}} \\ & \Rightarrow rot\bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\times \frac{\bar{r}-\bar{r}\acute{\ }}{{{\left| \bar{r}-\bar{r}\acute{\ } \right|}^{3}}}=\bar{B}(\bar{r}) \\ \end{align}</math> Folgende Aussagen sind äquivalent: Es existiert ein Vektorpotenzial mit :<math>\begin{align} & \bar{B}=rot\bar{A}(\bar{r}) \\ & \Leftrightarrow \\ \end{align}</math> :<math>div\bar{B}=0</math> Beweis: :<math>div(rot\bar{A}(\bar{r}))=0</math> es gibt '''keine Quellen der magnetischen Induktion''' (es existieren keine "magnetischen Ladungen". Aber: {{FB|Magnetische Monopole}} wurden 1936 von Dirac postuliert, um die Quantelung der Ladung zu erklären. (aus der quantenmechanischen Quantisierung des Drehimpulses!) Dies wurde durch die vereinheitlichte Feldtheori4e wieder aufgenommen! Es wurden extrem schwere magnetische Monopole postuliert, die beim Urknall in den ersten <math>{{10}^{-35}}s</math> erzeugt worden sein sollen. Sehr umstritten ist ein angeblicher experimenteller Nachweis von 1982 (Spektrum der Wissenschaft, Juni 1982, S. 78 ff.) '''Der Zusammenhang zwischen''' <math>\bar{B}(\bar{r})</math> und <math>\bar{j}(\bar{r})</math>: :<math>\begin{align} & \nabla \times \bar{B}(\bar{r})=\nabla \times \left( \nabla \times \bar{A}(\bar{r}) \right)=\nabla \left( \nabla \cdot \bar{A}(\bar{r}) \right)-\Delta \bar{A}(\bar{r}) \\ & \nabla \cdot \bar{A}(\bar{r})=\nabla \cdot \frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|}=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\nabla }_{r}}\cdot \left( \frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \right)=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ }){{\nabla }_{r}}\cdot \frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \\ & {{\nabla }_{r}}\cdot \frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|}=-{{\nabla }_{r\acute{\ }}}\cdot \frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \\ & \Rightarrow \nabla \cdot \bar{A}(\bar{r})=-\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\left[ {{\nabla }_{r\acute{\ }}}\cdot \left( \frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \right)+\frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|}{{\nabla }_{r\acute{\ }}}\cdot \bar{j}(\bar{r}\acute{\ }) \right] \\ & {{\nabla }_{r\acute{\ }}}\cdot \bar{j}(\bar{r}\acute{\ })=-\frac{\partial }{\partial t}\rho =0 \\ & \Rightarrow \nabla \cdot \bar{A}(\bar{r})=-\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\nabla }_{r\acute{\ }}}\cdot \left( \frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \right) \\ \end{align}</math> Wobei die verwendete {{FB|Kontinuitätsgleichung}} natürlich nur für statische Ladungsverteilungen gilt! Im Allgemeinen Fall gilt dagegen: :<math>\begin{align} & \Rightarrow \nabla \cdot \bar{A}(\bar{r})=-\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\nabla }_{r\acute{\ }}}\cdot \left( \frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \right)-\frac{\partial }{\partial t}\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\rho (\bar{r}\acute{\ },t)}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \\ & \frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\rho (\bar{r}\acute{\ },t)}{\left| \bar{r}-\bar{r}\acute{\ } \right|}={{\mu }_{0}}{{\varepsilon }_{0}}\Phi (\bar{r},t) \\ & \Rightarrow \nabla \cdot \bar{A}(\bar{r})=-\frac{{{\mu }_{0}}}{4\pi }\oint\limits_{S\infty }{{}}{{d}^{3}}\bar{f}\acute{\ }\left( \frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \right)-{{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial }{\partial t}\Phi (\bar{r},t) \\ \end{align}</math> Mit dem {{FB|Gaußschen Satz}}. Wenn das Potenzial jedoch ins unendliche hinreichend rasch abfällt, so gilt: :<math>\oint\limits_{S\infty }{{}}{{d}^{3}}\bar{f}\acute{\ }\left( \frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \right)=0</math> Also: :<math>\nabla \cdot \bar{A}(\bar{r})=-{{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial }{\partial t}\Phi (\bar{r},t)</math> Also: :<math>\nabla \left( \nabla \cdot \bar{A}(\bar{r}) \right)={{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial }{\partial t}\bar{E}(\bar{r},t)</math> Auf der anderen Seite ergibt sich ganz einfach :<math>\begin{align} & \Delta \bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\Delta }_{r}}\cdot \left( \frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \right)=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ }){{\Delta }_{r}}\cdot \left( \frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \right) \\ & =\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\delta \left( \bar{r}-\bar{r}\acute{\ } \right)=-{{\mu }_{0}}\bar{j}(\bar{r}) \\ \end{align}</math> wegen <math>{{\Delta }_{r}}\cdot \left( \frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|} \right)=4\pi \delta \left( \bar{r}-\bar{r}\acute{\ } \right)</math> Also: :<math>\nabla \times \bar{B}(\bar{r})=\nabla \left( \nabla \cdot \bar{A}(\bar{r}) \right)-\Delta \bar{A}(\bar{r})={{\mu }_{0}}\bar{j}(\bar{r})+{{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial }{\partial t}\bar{E}(\bar{r},t)</math> Für stationäre Ströme, die gerade bei stationären Ladungsverteilungen vorliegen, folgt: :<math>\begin{align} & \nabla \times \bar{B}(\bar{r})={{\mu }_{0}}\bar{j}(\bar{r}) \\ & {{\mu }_{0}}{{\varepsilon }_{0}}\frac{\partial }{\partial t}\bar{E}(\bar{r},t)=0 \\ \end{align}</math> Dies ist die differenzielle Form des {{FB|Ampereschen Gesetzes}}. Die Ströme sind die Wirbel der magnetischen Induktion!! Integration über eine Fläche F mit Rand <math>\partial F</math> liefert die Intgralform: :<math>\begin{align} & \int_{{}}^{{}}{d\bar{f}\cdot }\nabla \times \bar{B}(\bar{r})=\oint\limits_{\partial F}{{}}d\bar{s}\bar{B}(\bar{r})=\int_{{}}^{{}}{d\bar{f}\cdot }{{\mu }_{0}}\bar{j}(\bar{r})={{\mu }_{0}}I \\ & \oint\limits_{\partial F}{{}}d\bar{s}\bar{B}(\bar{r})={{\mu }_{0}}I \\ \end{align}</math> Mit dem {{FB|Satz von Stokes}} Das sogenannte {{FB|Durchflutungsgesetz}}! ==Zusammenfassung== ===Magnetostatik=== :<math>div\bar{B}=0\Leftrightarrow \bar{B}=rot\bar{A}</math> (quellenfreiheit) :<math>\begin{align} & rot\bar{B}={{\mu }_{0}}\bar{j}(\bar{r})\Leftrightarrow \oint\limits_{\partial F}{{}}d\bar{s}\cdot \bar{B}={{\mu }_{0}}I \\ & \Rightarrow \Delta \bar{A}=-{{\mu }_{0}}\bar{j}(\bar{r}) \\ \end{align}</math> Gilt jedoch nur im Falle der {{FB|Coulomb-Eichung}}: :<math>\nabla \cdot \bar{A}=0</math> Dies geschieht durch die Umeichung :<math>\begin{align} & \bar{A}\acute{\ }(\bar{r})\to \bar{A}+\nabla \Psi \\ & \nabla \times \bar{A}\acute{\ }(\bar{r})\to \nabla \times \bar{A}+\nabla \times \nabla \Psi \\ & \nabla \times \nabla \Psi =0\Rightarrow \nabla \times \bar{A}\acute{\ }(\bar{r})\to \nabla \times \bar{A} \\ & \Rightarrow \nabla \times \left( \nabla \times \bar{A}\acute{\ }(\bar{r}) \right)=\nabla \times \bar{B}(\bar{r})={{\mu }_{0}}\bar{j} \\ & \nabla \times \left( \nabla \times \bar{A}\acute{\ }(\bar{r}) \right)=\nabla \left( \nabla \cdot \bar{A}\acute{\ }(\bar{r}) \right)-\Delta \bar{A}\acute{\ }(\bar{r}) \\ \end{align}</math> ===Elektrostatik=== :<math>rot\bar{E}=0\Leftrightarrow \bar{E}=-\nabla \Phi </math> (Wirbelfreiheit) :<math>\begin{align} & {{\varepsilon }_{0}}\nabla \cdot \bar{E}=\rho \\ & \Leftrightarrow {{\varepsilon }_{0}}\oint\limits_{\partial V}{d\bar{f}\cdot }\bar{E}=Q \\ \end{align}</math> differenzielle Form / integrale Form :<math>\Rightarrow \Delta \Phi =-\frac{1}{{{\varepsilon }_{0}}}\rho \left( {\bar{r}} \right)</math> ({{FB|Poissongleichung}})
Summary:
Please note that all contributions to testwiki are considered to be released under the Creative Commons Attribution (see
Testwiki:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Templates used on this page:
Template:Anker
(
edit
)
Template:Anker/code
(
edit
)
Template:FB
(
edit
)
Template:ScriptProf
(
edit
)
Template:Scripthinweis
(
edit
)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
Edit source
View history
More
Search
Navigation
Main page
Recent changes
Random page
Physikerwelt
Tools
What links here
Related changes
Special pages
Page information
In other projects