Editing
Magnetische Multipole
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
<noinclude>{{Scripthinweis|Elektrodynamik|2|4}}</noinclude> == (stationär)== Ausgangspunkt ist :<math>\bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi }\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\frac{\bar{j}(\bar{r}\acute{\ })}{\left| \bar{r}-\bar{r}\acute{\ } \right|}</math> (mit der Coulomb- Eichung <math>\nabla \cdot \bar{A}(\bar{r})=0</math>) mit den Randbedingungen :<math>\bar{A}(\bar{r})\to 0</math> für r→ unendlich Taylorentwicklung nach :<math>\frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|}</math> von analog zum elektrischen Fall: Die Stromverteilung <math>\bar{j}(\bar{r}\acute{\ })</math> sei stationär für <math>r>>r\acute{\ }</math> :<math>\frac{1}{\left| \bar{r}-\bar{r}\acute{\ } \right|}=\frac{1}{r}+\frac{1}{{{r}^{3}}}\left( \bar{r}\cdot \bar{r}\acute{\ } \right)+...</math> :<math>\bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi r}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })+\frac{{{\mu }_{0}}}{4\pi {{r}^{3}}}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\left( \bar{r}\cdot \bar{r}\acute{\ } \right)+...</math> ===Monopol- Term=== '''Mit''' :<math>{{\nabla }_{r\acute{\ }}}\cdot \left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]={{x}_{k}}\acute{\ }\left( {{\nabla }_{r\acute{\ }}}\cdot \bar{j}(\bar{r}\acute{\ }) \right)+\bar{j}(\bar{r}\acute{\ })\cdot \left( {{\nabla }_{r\acute{\ }}}{{x}_{k}}\acute{\ } \right)</math> Im stationären Fall folgt aus der {{FB|Kontinuitätsgleichung}}: :<math>{{\nabla }_{r\acute{\ }}}\cdot \bar{j}(\bar{r}\acute{\ })=0</math> :<math>{{\nabla }_{r\acute{\ }}}\cdot \left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]=\bar{j}(\bar{r}\acute{\ })\cdot \left( {{\nabla }_{r\acute{\ }}}{{x}_{k}}\acute{\ } \right)={{j}_{l}}{{\delta }_{kl}}={{j}_{k}}</math> Mit <math>{{\nabla }_{r\acute{\ }}}\cdot \left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]={{j}_{k}}</math> folgt dann: :<math>\int_{{}}^{{}}{{{d}^{3}}r\acute{\ }}{{j}_{k}}(\bar{r}\acute{\ })=\int_{{}}^{{}}{{{d}^{3}}r\acute{\ }}{{\nabla }_{r\acute{\ }}}\cdot \left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]=\oint\limits_{S\infty }{d\bar{f}}\left[ {{x}_{k}}\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]=0</math> <u>Somit verschwindet der Monopolterm in der Theorie.</u> === Dipol- Term === mit <math>\left[ \bar{r}\acute{\ }\times \bar{j}(\bar{r}\acute{\ }) \right]\times \bar{r}=\left( \bar{r}\bar{r}\acute{\ } \right)\bar{j}-\left( \bar{r}\bar{j} \right)\bar{r}\acute{\ }=2\left( \bar{r}\bar{r}\acute{\ } \right)\bar{j}-\left[ \left( \bar{r}\bar{r}\acute{\ } \right)\bar{j}+\left( \bar{r}\bar{j} \right)\bar{r}\acute{\ } \right]</math> und mit :<math>\begin{align} & {{\nabla }_{r\acute{\ }}}\left[ {{x}_{k}}\acute{\ }\left( \bar{r}\bar{r}\acute{\ } \right)\bar{j} \right]=\left[ \left( \bar{r}\bar{r}\acute{\ } \right){{j}_{k}}+{{x}_{k}}\acute{\ }\left( \bar{r}\bar{j} \right)+{{x}_{k\acute{\ }}}\left( \bar{r}\bar{r}\acute{\ } \right){{\nabla }_{r\acute{\ }}}\cdot \bar{j} \right] \\ & {{\nabla }_{r\acute{\ }}}\cdot \bar{j}=0 \\ & \Rightarrow {{\nabla }_{r\acute{\ }}}\left[ {{x}_{k}}\acute{\ }\left( \bar{r}\bar{r}\acute{\ } \right)\bar{j} \right]=\left[ \left( \bar{r}\bar{r}\acute{\ } \right){{j}_{k}}+{{x}_{k}}\acute{\ }\left( \bar{r}\bar{j} \right) \right] \\ \end{align}</math> Folgt: :<math>\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\nabla }_{r\acute{\ }}}\left[ {{x}_{k}}\acute{\ }\left( \bar{r}\bar{r}\acute{\ } \right)\bar{j} \right]=\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\left[ \left( \bar{r}\bar{r}\acute{\ } \right){{j}_{k}}+{{x}_{k}}\acute{\ }\left( \bar{r}\bar{j} \right) \right]=0</math> Da :<math>\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\nabla }_{r\acute{\ }}}\left[ {{x}_{k}}\acute{\ }\left( \bar{r}\bar{r}\acute{\ } \right)\bar{j} \right]=\oint\limits_{S\infty }{d\bar{f}}\left[ {{x}_{k}}\acute{\ }\left( \bar{r}\bar{r}\acute{\ } \right)\bar{j} \right]=0</math> weil der Strom verschwindet! Somit gibt der Term :<math>\left[ \left( \bar{r}\bar{r}\acute{\ } \right)\bar{j}+\left( \bar{r}\bar{j} \right)\bar{r}\acute{\ } \right]</math> '''keinen Beitrag zum''' :<math>\frac{{{\mu }_{0}}}{4\pi {{r}^{3}}}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\left( \bar{r}\cdot \bar{r}\acute{\ } \right)</math> Also: :<math>\bar{A}(\bar{r})=\frac{{{\mu }_{0}}}{4\pi {{r}^{3}}}\frac{1}{2}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\left( \bar{r}\acute{\ }\times \bar{j}(\bar{r}\acute{\ }) \right)\times \bar{r}</math> Als {{FB|Dipolpotenzial}}!! :<math>\begin{align} & \bar{A}(\bar{r}):=\frac{{{\mu }_{0}}}{4\pi {{r}^{3}}}\bar{m}\times \bar{r} \\ & \bar{m}=\frac{1}{2}\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\left( \bar{r}\acute{\ }\times \bar{j}(\bar{r}\acute{\ }) \right) \\ \end{align}</math> das magnetische Dipolmoment! Analog zu :<math>\begin{align} & \Phi (\bar{r}):=\frac{1}{4\pi {{\varepsilon }_{0}}{{r}^{3}}}\bar{p}\cdot \bar{r} \\ & \bar{p}:=\int_{{{R}^{3}}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{r}\acute{\ }\rho (\bar{r}\acute{\ }) \\ \end{align}</math> dem elektrischen Dipolmoment Die magnetische Induktion des Dipolmomentes ergibt sich als: :<math>\bar{B}(\bar{r}):=\nabla \times \frac{{{\mu }_{0}}}{4\pi {{r}^{3}}}\bar{m}\times \bar{r}=\frac{{{\mu }_{0}}}{4\pi {{r}^{5}}}\left[ 3\left( \bar{m}\cdot \bar{r} \right)\bar{r}-{{r}^{2}}\bar{m} \right]</math> Wegen: :<math>\nabla \times \left( \bar{a}\times \bar{b} \right)=\left( \bar{b}\cdot \nabla \right)\bar{a}-\left( \bar{a}\cdot \nabla \right)\bar{b}+\bar{a}\left( \nabla \cdot \bar{b} \right)-\bar{b}\left( \nabla \cdot \bar{a} \right)</math> mit <math>\begin{align} & \bar{a}=\frac{{\bar{m}}}{{{r}^{3}}} \\ & \bar{b}=\bar{r} \\ & \Rightarrow div\bar{a}=-3\frac{\bar{m}\cdot \bar{r}}{{{r}^{5}}} \\ & div\bar{b}=3 \\ & \left( \bar{b}\cdot \nabla \right)\bar{a}=-3\frac{\bar{m}\cdot {{r}^{2}}}{{{r}^{5}}} \\ & \left( \bar{a}\cdot \nabla \right)\bar{b}=\frac{{\bar{m}}}{{{r}^{3}}} \\ \end{align}</math> Analog ergab sich als elektrisches Dipolfeld: :<math>\bar{E}(\bar{r}):=\frac{1}{4\pi {{\varepsilon }_{0}}{{r}^{5}}}\left[ 3\left( \bar{p}\cdot \bar{r} \right)-{{r}^{2}}\bar{p} \right]</math> {{Beispiel|1= Beispiel: Ebene Leiterschleife L: :<math>\begin{align} & d\bar{f}\acute{\ }=\frac{1}{2}\bar{r}\acute{\ }\times d\bar{s}\acute{\ } \\ & {{d}^{3}}\bar{r}\acute{\ }j(\bar{r}\acute{\ })=d\bar{s}\acute{\ }I \\ \end{align}</math> Mit I = Strom durch den Leiter :<math>\Rightarrow \bar{m}=\frac{1}{2}\oint\limits_{L}{{}}{{d}^{3}}r\acute{\ }\left( \bar{r}\acute{\ }\times \bar{j}(\bar{r}\acute{\ }) \right)=\frac{I}{2}\oint\limits_{L}{{}}\bar{r}\acute{\ }\times d\bar{s}\acute{\ }=I\int_{F}^{{}}{{}}d\bar{f}\acute{\ }=IF\bar{n}</math> Dabei ist :<math>\bar{n}</math> die Normale auf der von L eingeschlossenen Fläche F Also: Ein Ringstrom bedingt ein {{FB|magnetisches Dipolmoment}} <math>\bar{m}</math> }} analog: 2 Punktladungen bedingen ein elektrisches Dipolmoment :<math>\bar{p}=q\bar{a}</math>, welches von der positiven zur negativen Ladung zeigt. === Bewegte Ladungen === N Teilchen mit den Massen m<sub>i</sub> und den Ladungen q<sub>i</sub> bewegen sich. Dabei sei die spezifische Ladung <math>\frac{{{q}_{i}}}{{{m}_{i}}}=\frac{q}{m}</math> konstant: :<math>\begin{align} & \rho (\bar{r})=\sum\limits_{i}{{}}{{q}_{i}}\delta \left( \bar{r}-{{{\bar{r}}}_{i}} \right) \\ & \bar{j}(\bar{r})=\sum\limits_{i}{{}}{{q}_{i}}{{{\bar{v}}}_{i}}\delta \left( \bar{r}-{{{\bar{r}}}_{i}} \right) \\ & {{{\bar{v}}}_{i}}=\frac{d{{{\bar{r}}}_{i}}}{dt} \\ \end{align}</math> Das {{FB|magnetische Dipolmoment}} beträgt: :<math>\begin{align} & \bar{m}=\frac{1}{2}\oint\limits_{L}{{}}{{d}^{3}}r\acute{\ }\left( \bar{r}\acute{\ }\times \bar{j}(\bar{r}\acute{\ }) \right)=\frac{1}{2}\sum\limits_{i}{{}}{{q}_{i}}\int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{r}\acute{\ }\times {{{\bar{v}}}_{i}}\delta \left( \bar{r}\acute{\ }-{{{\bar{r}}}_{i}} \right)=\frac{1}{2}\sum\limits_{i}{{}}{{q}_{i}}{{{\bar{r}}}_{i}}\times {{{\bar{v}}}_{i}}=\frac{1}{2}\sum\limits_{i}{{}}\frac{{{q}_{i}}}{{{m}_{i}}}{{m}_{i}}{{{\bar{r}}}_{i}}\times {{{\bar{v}}}_{i}} \\ & \frac{{{q}_{i}}}{{{m}_{i}}}=\frac{q}{m} \\ & \Rightarrow \bar{m}=\frac{q}{2m}\bar{L} \\ \end{align}</math> Mit dem {{FB|Bahndrehimpuls}} <math>\bar{L}</math>: :<math>\bar{m}=\frac{q}{2m}\bar{L}</math> gilt aber auch für starre Körper! * Allgemeines Gesetz! Jedoch gilt dies nicht für den Spin eines Elektrons!!! :<math>\begin{align} & \bar{m}=g\frac{e}{2m}\bar{S} \\ & g\approx 2 \\ \end{align}</math> Somit ist der Spin nicht vollständig durch die Vorstellung von einer rotierenden Ladungsverteilung zu verstehen! ==== Kraft auf eine Stromverteilung ==== :<math>\bar{j}(\bar{r}\acute{\ })={{\rho }_{i}}(\bar{r}\acute{\ })\bar{v}(\bar{r}\acute{\ })</math> im Feld einer externen {{FB|magnetischen Induktion}} <math>\bar{B}(\bar{r}\acute{\ })</math>: Spürt die {{FB|Lorentzkraft}} :<math>\bar{F}=\int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\times \bar{B}(\bar{r}\acute{\ })</math> Talyorentwicklung liefert: :<math>\begin{align} & \bar{B}(\bar{r}\acute{\ })=\bar{B}(\bar{r})+\left[ \left( \bar{r}\acute{\ }-\bar{r} \right)\nabla \right]\bar{B}(\bar{r})+.... \\ & \Rightarrow \bar{F}=\left[ \int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]\times \bar{B}(\bar{r}\acute{\ })+\int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\times \left[ \left( \bar{r}\acute{\ }-\bar{r} \right)\nabla \right]\bar{B}(\bar{r})+... \\ \end{align}</math> im stationären Fall gilt wieder: :<math>\left[ \int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ }) \right]=0</math> (keine Monopole) Also: :<math>\begin{align} & \bar{F}=\int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\times \left[ \left( \bar{r}\acute{\ } \right){{\nabla }_{r}} \right]\bar{B}(\bar{r})-\int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\times \left[ \left( {\bar{r}} \right){{\nabla }_{r}} \right]\bar{B}(\bar{r}) \\ & \int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\times \left[ \left( {\bar{r}} \right){{\nabla }_{r}} \right]\bar{B}(\bar{r})=0,da\int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })=0 \\ & \Rightarrow \bar{F}=\int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\times \left[ \left( \bar{r}\acute{\ } \right){{\nabla }_{r}} \right]\bar{B}(\bar{r}) \\ & \left[ \left( \bar{r}\acute{\ } \right){{\nabla }_{r}} \right]\bar{B}(\bar{r})={{\nabla }_{r}}\left[ \left( \bar{r}\acute{\ } \right)\cdot \bar{B}(\bar{r}) \right]-\bar{r}\acute{\ }\times \left[ {{\nabla }_{r}}\times \bar{B}(\bar{r}) \right] \\ \end{align}</math> Man fordert: :<math>\left[ {{\nabla }_{r}}\times \bar{B}(\bar{r}) \right]=0</math> (Das externe Feld soll keine Stromwirbel im Bereich von <math>\bar{j}(\bar{r}\acute{\ })</math> haben: :<math>\begin{align} & \bar{F}=\int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }\bar{j}(\bar{r}\acute{\ })\times {{\nabla }_{r}}\left[ \left( \bar{r}\acute{\ } \right)\cdot \bar{B}(\bar{r}) \right] \\ & \bar{j}(\bar{r}\acute{\ })\times {{\nabla }_{r}}\left[ \left( \bar{r}\acute{\ } \right)\cdot \bar{B}(\bar{r}) \right]=-{{\nabla }_{r}}\times \left[ \left( \left( \bar{r}\acute{\ } \right)\cdot \bar{B}(\bar{r}) \right)\bar{j}(\bar{r}\acute{\ }) \right]+\left[ \left( \bar{r}\acute{\ } \right)\cdot \bar{B}(\bar{r}) \right]{{\nabla }_{r}}\times \bar{j}(\bar{r}\acute{\ }) \\ & {{\nabla }_{r}}\times \bar{j}(\bar{r}\acute{\ })=0 \\ & \Rightarrow \bar{F}=-\int_{{}}^{{}}{{}}{{d}^{3}}r\acute{\ }{{\nabla }_{r}}\times \left[ \left( \left( \bar{r}\acute{\ } \right)\cdot \bar{B}(\bar{r}) \right)\bar{j}(\bar{r}\acute{\ }) \right]=-{{\nabla }_{r}}\times \left( \bar{m}\times \bar{B}(\bar{r}) \right) \\ & \bar{F}=-{{\nabla }_{r}}\times \left( \bar{m}\times \bar{B}(\bar{r}) \right)=\left( \bar{m}\cdot {{\nabla }_{r}} \right)\bar{B}(\bar{r})=-{{\nabla }_{r}}\left( -\bar{m}\cdot \bar{B}(\bar{r}) \right) \\ \end{align}</math> (Vergl. S. 34)
Summary:
Please note that all contributions to testwiki are considered to be released under the Creative Commons Attribution (see
Testwiki:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Templates used on this page:
Template:Anker
(
edit
)
Template:Anker/code
(
edit
)
Template:Beispiel
(
edit
)
Template:FB
(
edit
)
Template:ScriptProf
(
edit
)
Template:Scripthinweis
(
edit
)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
Edit source
View history
More
Search
Navigation
Main page
Recent changes
Random page
Physikerwelt
Tools
What links here
Related changes
Special pages
Page information
In other projects