Editing Kovariante Schreibweise der Relativitätstheorie

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 19: Line 19:
Der raumzeitliche Abstand
Der raumzeitliche Abstand


:<math>{{\left( ds \right)}^{2}}:={{\left( cdt \right)}^{2}}-{{\left( d\bar{r} \right)}^{2}}</math>
<math>{{\left( ds \right)}^{2}}:={{\left( cdt \right)}^{2}}-{{\left( d\bar{r} \right)}^{2}}</math>


ist in jedem Bezugssystem gleich, bleibt also invariant bei Transformationen zwischen Inertialsystemen (Lorentz- Transformationen!)
ist in jedem Bezugssystem gleich, bleibt also invariant bei Transformationen zwischen Inertialsystemen (Lorentz- Transformationen!)
Line 35: Line 35:
'''Def.:  '''Als kontravariante Komponenten des 4-Zeit-Orts-Vektors (Vierervektors) bezeichnet man:
'''Def.:  '''Als kontravariante Komponenten des 4-Zeit-Orts-Vektors (Vierervektors) bezeichnet man:


:<math>\begin{align}
<math>\begin{align}


& {{x}^{0}}:=ct \\
& {{x}^{0}}:=ct \\
Line 47: Line 47:
es schreibt sich
es schreibt sich


:<math>{{\left( ds \right)}^{2}}={{\left( d{{x}^{0}} \right)}^{2}}-{{\left( d{{x}^{1}} \right)}^{2}}-{{\left( d{{x}^{2}} \right)}^{2}}-{{\left( d{{x}^{3}} \right)}^{2}}</math>
<math>{{\left( ds \right)}^{2}}={{\left( d{{x}^{0}} \right)}^{2}}-{{\left( d{{x}^{1}} \right)}^{2}}-{{\left( d{{x}^{2}} \right)}^{2}}-{{\left( d{{x}^{3}} \right)}^{2}}</math>


'''Def.: '''als kovariante Komponenten des 4-Zeit-Orts-Vektors (Vierervektors) bezeichnet man:
'''Def.: '''als kovariante Komponenten des 4-Zeit-Orts-Vektors (Vierervektors) bezeichnet man:


:<math>\begin{align}
<math>\begin{align}


& {{x}_{0}}:={{x}^{0}} \\
& {{x}_{0}}:={{x}^{0}} \\
Line 61: Line 61:
Der kovariante Vektor ist Element des dualen Vektorraums <math>\tilde{V}</math>
Der kovariante Vektor ist Element des dualen Vektorraums <math>\tilde{V}</math>


:<math>\tilde{V}</math>
<math>\tilde{V}</math>


ist der Raum der linearen Funktionale l, die V auf R abbilden:
ist der Raum der linearen Funktionale l, die V auf R abbilden:


:<math>\tilde{V}=\left\{ lineareFunktionale\quad l:V->R \right\}</math>
<math>\tilde{V}=\left\{ lineareFunktionale\quad l:V->R \right\}</math>


es schreibt sich
es schreibt sich


:<math>{{\left( ds \right)}^{2}}=d{{x}^{0}}d{{x}_{0}}+d{{x}^{1}}d{{x}_{1}}+d{{x}^{2}}d{{x}_{2}}+d{{x}^{3}}d{{x}_{3}}=d{{x}^{i}}d{{x}_{i}}</math>
<math>{{\left( ds \right)}^{2}}=d{{x}^{0}}d{{x}_{0}}+d{{x}^{1}}d{{x}_{1}}+d{{x}^{2}}d{{x}_{2}}+d{{x}^{3}}d{{x}_{3}}=d{{x}^{i}}d{{x}_{i}}</math>


Natürlich mit Summenkonvention über i=0,1,2,3,...
Natürlich mit Summenkonvention über i=0,1,2,3,...
Line 80: Line 80:
gilt:
gilt:


:<math>\begin{align}
<math>\begin{align}


& {{a}_{0}}={{a}^{0}} \\
& {{a}_{0}}={{a}^{0}} \\
Line 93: Line 93:


=====Der d´Alemebert-Operator=====
=====Der d´Alemebert-Operator=====
:<math>\#:=\Delta -\frac{1}{{{c}^{2}}}\frac{{{\partial }^{2}}}{\partial {{t}^{2}}}=-\frac{\partial }{\partial {{x}^{i}}}\frac{\partial }{\partial {{x}_{i}}}</math>
<math>\#:=\Delta -\frac{1}{{{c}^{2}}}\frac{{{\partial }^{2}}}{\partial {{t}^{2}}}=-\frac{\partial }{\partial {{x}^{i}}}\frac{\partial }{\partial {{x}_{i}}}</math>


Mit
Mit


:<math>\frac{\partial }{\partial {{x}^{i}}}=\left( \frac{1}{c}\frac{\partial }{\partial t},\frac{\partial }{\partial {{x}^{\alpha }}} \right)=:{{\partial }_{i}}</math>
<math>\frac{\partial }{\partial {{x}^{i}}}=\left( \frac{1}{c}\frac{\partial }{\partial t},\frac{\partial }{\partial {{x}^{\alpha }}} \right)=:{{\partial }_{i}}</math>


kovariant
kovariant
Line 103: Line 103:
Die Eigenschaft der Kovarianz wird später aus dem Transformationsverhalten begründet!
Die Eigenschaft der Kovarianz wird später aus dem Transformationsverhalten begründet!


:<math>\frac{\partial }{\partial {{x}_{i}}}=\left( \frac{1}{c}\frac{\partial }{\partial t},-\frac{\partial }{\partial {{x}^{\alpha }}} \right)=:{{\partial }^{i}}</math>
<math>\frac{\partial }{\partial {{x}_{i}}}=\left( \frac{1}{c}\frac{\partial }{\partial t},-\frac{\partial }{\partial {{x}^{\alpha }}} \right)=:{{\partial }^{i}}</math>


kontravariant
kontravariant
Line 111: Line 111:
<u>'''Also:'''</u>
<u>'''Also:'''</u>


:<math>\Rightarrow \ \#=-{{\partial }_{i}}{{\partial }^{i}}</math>
<math>\Rightarrow \ \#=-{{\partial }_{i}}{{\partial }^{i}}</math>


<u>'''Vierergeschwindigkeit'''</u>
<u>'''Vierergeschwindigkeit'''</u>


:<math>\begin{align}
<math>\begin{align}


& {{u}^{i}}:=\frac{d{{x}^{i}}}{ds} \\
& {{u}^{i}}:=\frac{d{{x}^{i}}}{ds} \\
Line 127: Line 127:
Dabei gilt:
Dabei gilt:


:<math>\begin{align}
<math>\begin{align}


& \beta :=\frac{v}{c}=\frac{1}{c}\left| \frac{d\bar{r}}{dt} \right| \\
& \beta :=\frac{v}{c}=\frac{1}{c}\left| \frac{d\bar{r}}{dt} \right| \\
Line 137: Line 137:
Also:
Also:


:<math>\begin{align}
<math>\begin{align}


& {{u}^{0}}=\gamma  \\
& {{u}^{0}}=\gamma  \\
Line 147: Line 147:
Mit der Eigenzeit
Mit der Eigenzeit


:<math>d\tau =\frac{dt}{\gamma }</math>
<math>d\tau =\frac{dt}{\gamma }</math>


Die Eigenzeit ist als die Zeit im momentanen Ruhesystem zu verstehen!
Die Eigenzeit ist als die Zeit im momentanen Ruhesystem zu verstehen!


:<math>{{u}^{i}}{{u}_{i}}=\frac{d{{x}^{i}}d{{x}_{i}}}{d{{s}^{2}}}=1</math>
<math>{{u}^{i}}{{u}_{i}}=\frac{d{{x}^{i}}d{{x}_{i}}}{d{{s}^{2}}}=1</math>


ist nicht vom Bezugssystem abhängig, also invariant!
ist nicht vom Bezugssystem abhängig, also invariant!


=====Viererimpuls=====
=====Viererimpuls=====
:<math>\begin{align}
<math>\begin{align}


& {{p}^{i}}:={{m}_{0}}c{{u}^{i}} \\
& {{p}^{i}}:={{m}_{0}}c{{u}^{i}} \\
Line 176: Line 176:
folgt die Leistungsbilanz:
folgt die Leistungsbilanz:


:<math>{{k}^{i}}{{u}_{i}}=\left[ \frac{d}{d\tau }\left( {{m}_{0}}c{{u}^{i}} \right) \right]{{u}_{i}}</math>
<math>{{k}^{i}}{{u}_{i}}=\left[ \frac{d}{d\tau }\left( {{m}_{0}}c{{u}^{i}} \right) \right]{{u}_{i}}</math>


Mit Hilfe des Energiesatz kann dies umgewandelt werden zu
Mit Hilfe des Energiesatz kann dies umgewandelt werden zu


:<math>\begin{align}
<math>\begin{align}


& {{k}^{i}}{{u}_{i}}=\frac{{{m}_{0}}c}{2}\frac{d}{d\tau }\left( {{u}^{i}}{{u}_{i}} \right)=0 \\
& {{k}^{i}}{{u}_{i}}=\frac{{{m}_{0}}c}{2}\frac{d}{d\tau }\left( {{u}^{i}}{{u}_{i}} \right)=0 \\
Line 192: Line 192:
<u>'''Außerdem gilt:'''</u>
<u>'''Außerdem gilt:'''</u>


:<math>\begin{align}
<math>\begin{align}


& {{k}^{i}}{{u}_{i}}=\frac{d}{d\tau }\left( {{p}^{0}} \right){{u}_{0}}+{{k}^{\alpha }}{{u}_{\alpha }}=\gamma \frac{d}{d\tau }\left( {{p}^{0}} \right)+\frac{\gamma }{c}{{k}^{\alpha }}{{v}_{\alpha }}=\frac{\gamma }{c}\left[ \frac{d}{d\tau }\left( c{{p}^{0}} \right)-\bar{k}\bar{v} \right]=0 \\
& {{k}^{i}}{{u}_{i}}=\frac{d}{d\tau }\left( {{p}^{0}} \right){{u}_{0}}+{{k}^{\alpha }}{{u}_{\alpha }}=\gamma \frac{d}{d\tau }\left( {{p}^{0}} \right)+\frac{\gamma }{c}{{k}^{\alpha }}{{v}_{\alpha }}=\frac{\gamma }{c}\left[ \frac{d}{d\tau }\left( c{{p}^{0}} \right)-\bar{k}\bar{v} \right]=0 \\
Line 218: Line 218:
Also folgt an die Energie:
Also folgt an die Energie:


:<math>{{E}^{2}}={{m}_{0}}^{2}{{c}^{4}}+{{c}^{2}}{{\bar{p}}^{2}}</math>
<math>{{E}^{2}}={{m}_{0}}^{2}{{c}^{4}}+{{c}^{2}}{{\bar{p}}^{2}}</math>


Dies ist die relativistsiche Energie- Impuls- Beziehung
Dies ist die relativistsiche Energie- Impuls- Beziehung
Line 239: Line 239:
Es gilt:
Es gilt:


:<math>\begin{align}
<math>\begin{align}


& {{A}^{00}}={{A}^{0}}_{0}={{A}_{0}}^{0}={{A}_{00}} \\
& {{A}^{00}}={{A}^{0}}_{0}={{A}_{0}}^{0}={{A}_{00}} \\
Line 253: Line 253:
Die Spur eines Tensors ist dagegen wieder allgemein:
Die Spur eines Tensors ist dagegen wieder allgemein:


:<math>spA={{A}^{i}}_{i}={{A}_{i}}^{i}</math>
<math>spA={{A}^{i}}_{i}={{A}_{i}}^{i}</math>


=====- er Einheitstensor=====
=====- er Einheitstensor=====
:<math>{{\delta }^{k}}_{i}={{\delta }_{i}}^{k}</math>
<math>{{\delta }^{k}}_{i}={{\delta }_{i}}^{k}</math>


wie beim Kronecker- Symbol 1 für i=k und sonst Null, also symmetrisch
wie beim Kronecker- Symbol 1 für i=k und sonst Null, also symmetrisch


:<math>\begin{align}
<math>\begin{align}


& {{\delta }_{i}}^{k}{{a}^{k}}={{a}^{i}} \\
& {{\delta }_{i}}^{k}{{a}^{k}}={{a}^{i}} \\
Line 272: Line 272:
<u>'''Der metrische Tensor'''</u>
<u>'''Der metrische Tensor'''</u>


:<math>\begin{align}
<math>\begin{align}


& {{g}^{ik}}:={{\delta }^{ik}}={{\delta }^{i}}_{k}\quad f\ddot{u}r\ k=0 \\
& {{g}^{ik}}:={{\delta }^{ik}}={{\delta }^{i}}_{k}\quad f\ddot{u}r\ k=0 \\
Line 298: Line 298:
Also:
Also:


:<math>{{g}^{ik}}{{a}_{k}}={{\delta }^{ik}}{{a}_{k}}={{a}^{i}}\quad f\ddot{u}r\ i=0,1,2,3</math>
<math>{{g}^{ik}}{{a}_{k}}={{\delta }^{ik}}{{a}_{k}}={{a}^{i}}\quad f\ddot{u}r\ i=0,1,2,3</math>


Man spricht auch vom heben und Senken der Indices durch die Metrik!
Man spricht auch vom heben und Senken der Indices durch die Metrik!
Line 304: Line 304:
=====Lorentz- Trnsformationen (linear, homogen) <math>\Sigma \to \Sigma \acute{\ }</math>=====
=====Lorentz- Trnsformationen (linear, homogen) <math>\Sigma \to \Sigma \acute{\ }</math>=====


:<math>\begin{align}
<math>\begin{align}


& x{{\acute{\ }}^{i}}={{U}^{i}}_{k}{{x}^{k}} \\
& x{{\acute{\ }}^{i}}={{U}^{i}}_{k}{{x}^{k}} \\
Line 326: Line 326:
Somit:
Somit:


:<math>{{U}^{k}}_{i}=\left( \begin{matrix}
<math>{{U}^{k}}_{i}=\left( \begin{matrix}


\gamma  & \beta \gamma  & 0 & 0  \\
\gamma  & \beta \gamma  & 0 & 0  \\
Line 342: Line 342:
Damit läßt sich die Invarianz des Skalaprodukts leicht zeigen:
Damit läßt sich die Invarianz des Skalaprodukts leicht zeigen:


:<math>\begin{align}
<math>\begin{align}


& a{{\acute{\ }}^{i}}={{U}^{i}}_{k}{{a}^{k}} \\
& a{{\acute{\ }}^{i}}={{U}^{i}}_{k}{{a}^{k}} \\
Line 360: Line 360:
'''Umkehr- Transformation:'''
'''Umkehr- Transformation:'''


:<math>\begin{align}
<math>\begin{align}


& {{a}^{i}}={{U}_{k}}^{i}a{{\acute{\ }}^{k}} \\
& {{a}^{i}}={{U}_{k}}^{i}a{{\acute{\ }}^{k}} \\
Line 370: Line 370:
Denn:
Denn:


:<math>{{U}_{k}}^{i}{{U}^{k}}_{l}{{a}^{l}}={{\delta }^{i}}_{l}{{a}^{l}}={{a}^{i}}</math>
<math>{{U}_{k}}^{i}{{U}^{k}}_{l}{{a}^{l}}={{\delta }^{i}}_{l}{{a}^{l}}={{a}^{i}}</math>


In Matrizenschreibweise:
In Matrizenschreibweise:


:<math>\begin{align}
<math>\begin{align}


& {{U}^{i}}_{k}=\left( \begin{matrix}
& {{U}^{i}}_{k}=\left( \begin{matrix}
Line 423: Line 423:


=====Transformationsverhalten des Vierergradienten=====
=====Transformationsverhalten des Vierergradienten=====
:<math>\frac{\partial }{\partial {{x}^{i}}}:={{\partial }_{i}}=\frac{\partial }{\partial x{{\acute{\ }}^{k}}}\frac{\partial x{{\acute{\ }}^{k}}}{\partial {{x}^{i}}}={{U}^{k}}_{i}\frac{\partial }{\partial x{{\acute{\ }}^{k}}}={{U}^{k}}_{i}\partial {{\acute{\ }}_{k}}</math>
<math>\frac{\partial }{\partial {{x}^{i}}}:={{\partial }_{i}}=\frac{\partial }{\partial x{{\acute{\ }}^{k}}}\frac{\partial x{{\acute{\ }}^{k}}}{\partial {{x}^{i}}}={{U}^{k}}_{i}\frac{\partial }{\partial x{{\acute{\ }}^{k}}}={{U}^{k}}_{i}\partial {{\acute{\ }}_{k}}</math>


Mit der Identität
Mit der Identität


:<math>\frac{\partial x{{\acute{\ }}^{k}}}{\partial {{x}^{i}}}={{U}^{k}}_{i}</math>
<math>\frac{\partial x{{\acute{\ }}^{k}}}{\partial {{x}^{i}}}={{U}^{k}}_{i}</math>


Das heißt jedoch
Das heißt jedoch


:<math>\frac{\partial }{\partial {{x}^{i}}}</math>
<math>\frac{\partial }{\partial {{x}^{i}}}</math>


transformiert sich wie <math>{{a}_{i}}</math>
transformiert sich wie <math>{{a}_{i}}</math>
Line 439: Line 439:
Analog kann gezeigt werden:
Analog kann gezeigt werden:


:<math>\frac{\partial }{\partial {{x}_{i}}}:={{\partial }^{i}}=\frac{\partial }{\partial x{{\acute{\ }}_{k}}}\frac{\partial x{{\acute{\ }}_{k}}}{\partial {{x}_{i}}}={{U}_{k}}^{i}\frac{\partial }{\partial x{{\acute{\ }}_{k}}}</math>
<math>\frac{\partial }{\partial {{x}_{i}}}:={{\partial }^{i}}=\frac{\partial }{\partial x{{\acute{\ }}_{k}}}\frac{\partial x{{\acute{\ }}_{k}}}{\partial {{x}_{i}}}={{U}_{k}}^{i}\frac{\partial }{\partial x{{\acute{\ }}_{k}}}</math>


:<math>\frac{\partial }{\partial {{x}_{i}}}</math>
<math>\frac{\partial }{\partial {{x}_{i}}}</math>


transformiert sich wie <math>{{a}^{i}}</math>
transformiert sich wie <math>{{a}^{i}}</math>
,
,
  also kontravariant.  (PRÜFEN!)
  also kontravariant.  (PRÜFEN!)
Please note that all contributions to testwiki are considered to be released under the Creative Commons Attribution (see Testwiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!
Cancel Editing help (opens in new window)

Templates used on this page: