Editing Klassisch- mechanische Gleichgewichtsverteilungen

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 15: Line 15:
'''Hamiltonfunktion'''
'''Hamiltonfunktion'''


:<math>H\left( \xi  \right)=H\left( {{q}_{1}}...{{q}_{3N}},{{p}_{1}}...{{p}_{3N}} \right)</math>
<math>H\left( \xi  \right)=H\left( {{q}_{1}}...{{q}_{3N}},{{p}_{1}}...{{p}_{3N}} \right)</math>


'''Hamiltonsche Gleichungen''':
'''Hamiltonsche Gleichungen''':


:<math>\begin{align}
<math>\begin{align}


& {{{\dot{q}}}_{k}}=\frac{\partial H\left( \xi  \right)}{\partial {{p}_{k}}} \\
& {{{\dot{q}}}_{k}}=\frac{\partial H\left( \xi  \right)}{\partial {{p}_{k}}} \\
Line 29: Line 29:
Lösung:
Lösung:


:<math>\xi (t)</math>
<math>\xi (t)</math>


als Trajektorie im Phasneraum <math>\Gamma </math> (bei euklidischer Metrik) gegeben durch das 6N-dimensionale  Vektorfeld
als Trajektorie im Phasneraum <math>\Gamma </math> (bei euklidischer Metrik) gegeben durch das 6N-dimensionale  Vektorfeld
Line 41: Line 41:
Interpretiert man <math>\rho \left( \xi  \right)</math> als Dichte der Phasenpunkte im Phasenraum für ein Ensemble äquivalenter Systeme, so gilt der Erhaltungssatz ({{FB|Kontinuitätsgleichung}}):
Interpretiert man <math>\rho \left( \xi  \right)</math> als Dichte der Phasenpunkte im Phasenraum für ein Ensemble äquivalenter Systeme, so gilt der Erhaltungssatz ({{FB|Kontinuitätsgleichung}}):


:<math>\frac{\partial \rho \left( \xi  \right)}{\partial t}+div\left( \rho \dot{\xi } \right)=0</math>
<math>\frac{\partial \rho \left( \xi  \right)}{\partial t}+div\left( \rho \dot{\xi } \right)=0</math>


Interpretation:
Interpretation:
Line 53: Line 53:
Die Änderung der Dichte in dem mit dem Fluss mitbewegten lokalen Koordinatensystem ist:
Die Änderung der Dichte in dem mit dem Fluss mitbewegten lokalen Koordinatensystem ist:


:<math>\frac{d\rho \left( \xi ,t \right)}{dt}=\frac{\partial \rho \left( \xi ,t \right)}{\partial t}+\sum\limits_{k=1}^{3N}{{}}\left( \frac{\partial \rho \left( \xi ,t \right)}{\partial {{q}_{k}}}{{{\dot{q}}}_{k}}+\frac{\partial \rho \left( \xi ,t \right)}{\partial {{p}_{k}}}{{{\dot{p}}}_{k}} \right)</math>
<math>\frac{d\rho \left( \xi ,t \right)}{dt}=\frac{\partial \rho \left( \xi ,t \right)}{\partial t}+\sum\limits_{k=1}^{3N}{{}}\left( \frac{\partial \rho \left( \xi ,t \right)}{\partial {{q}_{k}}}{{{\dot{q}}}_{k}}+\frac{\partial \rho \left( \xi ,t \right)}{\partial {{p}_{k}}}{{{\dot{p}}}_{k}} \right)</math>


Wegen <math>div\dot{\xi }:=\sum\limits_{k=1}^{3N}{{}}\left( \frac{\partial {{{\dot{q}}}_{k}}}{\partial {{q}_{k}}}+\frac{\partial {{{\dot{p}}}_{k}}}{\partial {{p}_{k}}} \right)=\sum\limits_{k=1}^{3N}{{}}\left( \frac{\partial }{\partial {{q}_{k}}}\frac{\partial H\left( \xi  \right)}{\partial {{p}_{k}}}-\frac{\partial }{\partial {{q}_{k}}}\frac{\partial H\left( \xi  \right)}{\partial {{p}_{k}}} \right)=0</math>
Wegen <math>div\dot{\xi }:=\sum\limits_{k=1}^{3N}{{}}\left( \frac{\partial {{{\dot{q}}}_{k}}}{\partial {{q}_{k}}}+\frac{\partial {{{\dot{p}}}_{k}}}{\partial {{p}_{k}}} \right)=\sum\limits_{k=1}^{3N}{{}}\left( \frac{\partial }{\partial {{q}_{k}}}\frac{\partial H\left( \xi  \right)}{\partial {{p}_{k}}}-\frac{\partial }{\partial {{q}_{k}}}\frac{\partial H\left( \xi  \right)}{\partial {{p}_{k}}} \right)=0</math>
Line 59: Line 59:
folgt aus der Kontinuitätsgleichung
folgt aus der Kontinuitätsgleichung


:<math>\begin{align}
<math>\begin{align}


& \frac{\partial \rho \left( \xi ,t \right)}{\partial t}+div\left( \rho \dot{\xi } \right)=\frac{\partial \rho \left( \xi ,t \right)}{\partial t}+\sum\limits_{k=1}^{3N}{{}}\left( \frac{\partial \rho \left( \xi ,t \right)}{\partial {{q}_{k}}}{{{\dot{q}}}_{k}}+\frac{\partial \rho \left( \xi ,t \right)}{\partial {{p}_{k}}}{{{\dot{p}}}_{k}} \right)+\rho div\dot{\xi } \\
& \frac{\partial \rho \left( \xi ,t \right)}{\partial t}+div\left( \rho \dot{\xi } \right)=\frac{\partial \rho \left( \xi ,t \right)}{\partial t}+\sum\limits_{k=1}^{3N}{{}}\left( \frac{\partial \rho \left( \xi ,t \right)}{\partial {{q}_{k}}}{{{\dot{q}}}_{k}}+\frac{\partial \rho \left( \xi ,t \right)}{\partial {{p}_{k}}}{{{\dot{p}}}_{k}} \right)+\rho div\dot{\xi } \\
Line 100: Line 100:
Der thermodynamische Zustand sei gegeben durch Mittelwerte von Phasenraumfunktionen:
Der thermodynamische Zustand sei gegeben durch Mittelwerte von Phasenraumfunktionen:


:<math>\begin{align}
<math>\begin{align}


& \left\langle {{M}^{n}} \right\rangle =\int_{{}}^{{}}{{}}d\xi \rho \left( \xi  \right){{M}^{n}}\left( \xi  \right) \\
& \left\langle {{M}^{n}} \right\rangle =\int_{{}}^{{}}{{}}d\xi \rho \left( \xi  \right){{M}^{n}}\left( \xi  \right) \\
Line 124: Line 124:
m=1:
m=1:


:<math>{{M}^{1}}\left( \xi  \right)=H\left( \xi  \right)</math>
<math>{{M}^{1}}\left( \xi  \right)=H\left( \xi  \right)</math>


Hamiltonfunktion als eine Art " Zufallsfunktion"
Hamiltonfunktion als eine Art " Zufallsfunktion"


:<math>{{\lambda }_{1}}=\beta </math>
<math>{{\lambda }_{1}}=\beta </math>


thermodynamisch konjugierter intensiver Parameter
thermodynamisch konjugierter intensiver Parameter


:<math>\left\langle {{M}^{1}} \right\rangle =U</math>
<math>\left\langle {{M}^{1}} \right\rangle =U</math>


innere Energie <-  enthält nicht die makroskopische Bewegung des Systems als Ganzes!
innere Energie <-  enthält nicht die makroskopische Bewegung des Systems als Ganzes!


:<math>Z=\exp \left( -\Psi  \right)=\int_{{{R}^{6N}}}^{{}}{{}}d\xi \exp \left( -\beta H\left( \xi  \right) \right)</math>
<math>Z=\exp \left( -\Psi  \right)=\int_{{{R}^{6N}}}^{{}}{{}}d\xi \exp \left( -\beta H\left( \xi  \right) \right)</math>


kanonische Zustandssumme (Partition function)
kanonische Zustandssumme (Partition function)


:<math>\rho \left( \xi  \right)={{Z}^{-1}}\exp \left( -\beta H\left( \xi  \right) \right)</math>
<math>\rho \left( \xi  \right)={{Z}^{-1}}\exp \left( -\beta H\left( \xi  \right) \right)</math>


als Dichteverteilung
als Dichteverteilung
Line 150: Line 150:
m=2:
m=2:


:<math>{{M}^{2}}\left( \xi  \right)=N</math>
<math>{{M}^{2}}\left( \xi  \right)=N</math>


Variable Teilchenzahl als Zufallsgröße
Variable Teilchenzahl als Zufallsgröße


:<math>{{\lambda }_{2}}=-\beta \mu </math>
<math>{{\lambda }_{2}}=-\beta \mu </math>


Konvention
Konvention


:<math>\left\langle {{M}^{2}} \right\rangle =\bar{N}</math>
<math>\left\langle {{M}^{2}} \right\rangle =\bar{N}</math>


mittlere Teilchenzahl
mittlere Teilchenzahl


:<math>Y=\exp \left( -\Psi  \right)=\sum\limits_{N=0}^{\infty }{{}}\int_{{{R}^{6N}}}^{{}}{{}}d{{\xi }_{N}}\exp \left[ -\beta \left( H\left( {{\xi }_{N}} \right)-\mu N \right) \right]</math>
<math>Y=\exp \left( -\Psi  \right)=\sum\limits_{N=0}^{\infty }{{}}\int_{{{R}^{6N}}}^{{}}{{}}d{{\xi }_{N}}\exp \left[ -\beta \left( H\left( {{\xi }_{N}} \right)-\mu N \right) \right]</math>


grokanonische Zustandssumme
grokanonische Zustandssumme
Line 168: Line 168:
Phasenraum:
Phasenraum:


:<math>\begin{align}
<math>\begin{align}


& \xi \in \Gamma =\bigcup\limits_{N=1}^{\infty }{{}}{{R}^{6N}} \\
& \xi \in \Gamma =\bigcup\limits_{N=1}^{\infty }{{}}{{R}^{6N}} \\
Line 176: Line 176:
\end{align}</math>
\end{align}</math>


:<math>\rho \left( \xi  \right)={{Y}^{-1}}\exp -\beta \left[ H\left( \xi  \right)-\mu N \right]</math>
<math>\rho \left( \xi  \right)={{Y}^{-1}}\exp -\beta \left[ H\left( \xi  \right)-\mu N \right]</math>


'''Mittelwertfindung:'''
'''Mittelwertfindung:'''


:<math>\left\langle M \right\rangle =\sum\limits_{N=0}^{\infty }{{}}\int_{{{R}^{6N}}}^{{}}{{}}d{{\xi }_{N}}M\left( {{\xi }_{N}} \right)\rho \left( {{\xi }_{N}} \right)=\sum\limits_{N=0}^{\infty }{{}}\int_{{{R}^{6N}}}^{{}}{{}}d{{\xi }_{N}}M\left( {{\xi }_{N}} \right){{Y}^{-1}}\exp -\beta \left[ H\left( \xi  \right)-\mu N \right]</math>
<math>\left\langle M \right\rangle =\sum\limits_{N=0}^{\infty }{{}}\int_{{{R}^{6N}}}^{{}}{{}}d{{\xi }_{N}}M\left( {{\xi }_{N}} \right)\rho \left( {{\xi }_{N}} \right)=\sum\limits_{N=0}^{\infty }{{}}\int_{{{R}^{6N}}}^{{}}{{}}d{{\xi }_{N}}M\left( {{\xi }_{N}} \right){{Y}^{-1}}\exp -\beta \left[ H\left( \xi  \right)-\mu N \right]</math>


Mittlere Teilchenzahl:
Mittlere Teilchenzahl:


:<math>\begin{align}
<math>\begin{align}


& \left\langle N \right\rangle =\sum\limits_{N=0}^{\infty }{{}}\int_{{{R}^{6N}}}^{{}}{{}}d{{\xi }_{N}}N\rho \left( {{\xi }_{N}} \right) \\
& \left\langle N \right\rangle =\sum\limits_{N=0}^{\infty }{{}}\int_{{{R}^{6N}}}^{{}}{{}}d{{\xi }_{N}}N\rho \left( {{\xi }_{N}} \right) \\
Line 196: Line 196:
= Marginalverteilung von
= Marginalverteilung von


:<math>\rho \left( {{\xi }_{N}} \right)</math>
<math>\rho \left( {{\xi }_{N}} \right)</math>


bezüglich N
bezüglich N
Line 202: Line 202:
Also:
Also:


:<math>\begin{align}
<math>\begin{align}


& \left\langle N \right\rangle =\sum\limits_{N=0}^{\infty }{{}}{{P}_{N}}N \\
& \left\langle N \right\rangle =\sum\limits_{N=0}^{\infty }{{}}{{P}_{N}}N \\
Line 212: Line 212:
Normierung:
Normierung:


:<math>1=\sum\limits_{N=0}^{\infty }{{}}{{P}_{N}}</math>}}
<math>1=\sum\limits_{N=0}^{\infty }{{}}{{P}_{N}}</math>}}
{{Beispiel|<u>'''Beispiel'''</u>
{{Beispiel|<u>'''Beispiel'''</u>


Klassisches ideales Gas (ohne Wechselwirkung):
Klassisches ideales Gas (ohne Wechselwirkung):


:<math>\begin{align}
<math>\begin{align}


& H\left( {{\xi }_{N}} \right)=\sum\limits_{i=1}^{3N}{{}}\frac{{{p}_{i}}^{2}}{2m} \\
& H\left( {{\xi }_{N}} \right)=\sum\limits_{i=1}^{3N}{{}}\frac{{{p}_{i}}^{2}}{2m} \\
Please note that all contributions to testwiki are considered to be released under the Creative Commons Attribution (see Testwiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!
Cancel Editing help (opens in new window)