Editing Effektives Potential

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 1: Line 1:
Es bietet sich an die Orientierung so zu wählen, dass die z Achse auf der vom Relativabstandsvektor und Relativimpuls aufgespannten Ebene senkrecht steht.
Es bietet sich an die Orientierung so zu wählen, dass die z Achse auf der vom Relativabstandsvektor und Relativimpuls aufgespannten Ebene senkrecht steht.


:<math>L={{L}_{z}}{{e}_{z}}=r\times p,{{e}_{z}}\bot A\left( r,\dot{r} \right)</math>
<math>L={{L}_{z}}{{e}_{z}}=r\times p,{{e}_{z}}\bot A\left( r,\dot{r} \right)</math>
(5.1)
(5.1)
Daraus folgt aber, aufgrund der Definition der Kugelkoordinaten, dass <math>\vartheta =\pi /2</math>ist daraus folgt, dass <math>\sin \vartheta =1</math>uns <math>\dot{\vartheta }=0</math>somit vereinfacht sich die Relativgeschwindigkeit zu.
Daraus folgt aber, aufgrund der Definition der Kugelkoordinaten, dass <math>\vartheta =\pi /2</math>ist daraus folgt, dass <math>\sin \vartheta =1</math>uns <math>\dot{\vartheta }=0</math>somit vereinfacht sich die Relativgeschwindigkeit zu.


:<math>{{\mathbf{\dot{r}}}^{2}}={{\dot{r}}^{2}}+{{r}^{2}}{{\dot{\varphi }}^{2}}</math>
<math>{{\mathbf{\dot{r}}}^{2}}={{\dot{r}}^{2}}+{{r}^{2}}{{\dot{\varphi }}^{2}}</math>
(5.2)
(5.2)
Die Drehimpulserhaltung ermöglicht es <math>\dot{\varphi }</math>nach dem Drehimpuls umzuformen und so zu eliminieren:
Die Drehimpulserhaltung ermöglicht es <math>\dot{\varphi }</math>nach dem Drehimpuls umzuformen und so zu eliminieren:


:<math>\dot{\varphi }=\frac{{{L}_{z}}}{\mu {{r}^{2}}}</math>
<math>\dot{\varphi }=\frac{{{L}_{z}}}{\mu {{r}^{2}}}</math>
(5.3)
(5.3)
Würde man dies in die Beziehung für die relative kinetische Energie einsetzen so erhielte man einen Term der nicht von <math>\dot{q}</math> sondern von <math>q</math>abhängt, was der Lagrang’schen Definition der kinetischen Energie widerspräche.
Würde man dies in die Beziehung für die relative kinetische Energie einsetzen so erhielte man einen Term der nicht von <math>\dot{q}</math> sondern von <math>q</math>abhängt, was der Lagrang’schen Definition der kinetischen Energie widerspräche.


:<math>{{T}_{R}}=\frac{1}{2}\mu {{\dot{r}}^{2}}+\underbrace{\frac{L_{z}^{2}}{2\mu {{r}^{2}}}}_{\dot{q}?}</math>
<math>{{T}_{R}}=\frac{1}{2}\mu {{\dot{r}}^{2}}+\underbrace{\frac{L_{z}^{2}}{2\mu {{r}^{2}}}}_{\dot{q}?}</math>
(5.4)
(5.4)
Also muss dieser Term zur Potentiellen Energie hinzugefügt werden. Diese heißt nun das effektive Potential (U). Es darf allerdings kein Minuszeichen vor den neuen Term kommen da die Energieerhaltung  E=T+U in jedem Fall gewahr werden muss.
Also muss dieser Term zur Potentiellen Energie hinzugefügt werden. Diese heißt nun das effektive Potential (U). Es darf allerdings kein Minuszeichen vor den neuen Term kommen da die Energieerhaltung  E=T+U in jedem Fall gewahr werden muss.


:<math>{{V}_{eff}}\equiv U=\frac{L_{z}^{2}}{2\mu {{r}^{2}}}-\frac{\alpha }{r}</math>
<math>{{V}_{eff}}\equiv U=\frac{L_{z}^{2}}{2\mu {{r}^{2}}}-\frac{\alpha }{r}</math>
(5.5)
(5.5)
Die Lagrangegleichung hat nun die korrekte Form und lautet.
Die Lagrangegleichung hat nun die korrekte Form und lautet.


:<math>L\left( \dot{q},q,t \right)=T\left( \dot{q},t \right)+U\left( q,t \right)=\underbrace{\frac{1}{2}M{{{\mathbf{\dot{R}}}}^{2}}}_{{{T}_{S}}}+\underbrace{\frac{1}{2}\mu {{{\dot{r}}}^{2}}}_{{{{{T}'}}_{R}}}-\underbrace{\frac{L_{z}^{2}}{2\mu {{r}^{2}}}+\frac{\alpha }{r}}_{U}</math>
<math>L\left( \dot{q},q,t \right)=T\left( \dot{q},t \right)+U\left( q,t \right)=\underbrace{\frac{1}{2}M{{{\mathbf{\dot{R}}}}^{2}}}_{{{T}_{S}}}+\underbrace{\frac{1}{2}\mu {{{\dot{r}}}^{2}}}_{{{{{T}'}}_{R}}}-\underbrace{\frac{L_{z}^{2}}{2\mu {{r}^{2}}}+\frac{\alpha }{r}}_{U}</math>
(5.6)
(5.6)
==Bahnkurve==
==Bahnkurve==
Wir wechseln wählen jetzt ein Inertialsystem des Schwerpunkts. Nach dem ersten Newtonschen Gesetz ist dies immer Möglich. Da der Schwerpunkt nun aber ruht oder sich gleichmäßig gleichförmig Bewegt verschwinden alle Komponenten von <math>\mathbf{\ddot{R}}</math>. Somit lautet die Lagrangefunktion
Wir wechseln wählen jetzt ein Inertialsystem des Schwerpunkts. Nach dem ersten Newtonschen Gesetz ist dies immer Möglich. Da der Schwerpunkt nun aber ruht oder sich gleichmäßig gleichförmig Bewegt verschwinden alle Komponenten von <math>\mathbf{\ddot{R}}</math>. Somit lautet die Lagrangefunktion


:<math>L\left( \dot{q},q,t \right)=\frac{1}{2}\mu {{\dot{r}}^{2}}-\frac{L_{z}^{2}}{2\mu {{r}^{2}}}+\frac{\alpha }{r}</math>
<math>L\left( \dot{q},q,t \right)=\frac{1}{2}\mu {{\dot{r}}^{2}}-\frac{L_{z}^{2}}{2\mu {{r}^{2}}}+\frac{\alpha }{r}</math>
(6.1)
(6.1)
Stellt man die Energieerhaltung nach
Stellt man die Energieerhaltung nach


:<math>T=E-U</math>
<math>T=E-U</math>
(6.2)
(6.2)
um und setzt dann T ein so erhält man:
um und setzt dann T ein so erhält man:


:<math>\begin{align}
<math>\begin{align}
   & \Rightarrow \frac{1}{2}\mu {{\left( \frac{dr}{dt} \right)}^{2}}=E-U \\
   & \Rightarrow \frac{1}{2}\mu {{\left( \frac{dr}{dt} \right)}^{2}}=E-U \\
  & \Leftrightarrow {{\left( \frac{dr}{dt} \right)}^{2}}=\frac{2}{\mu }\left( E-U \right) \\
  & \Leftrightarrow {{\left( \frac{dr}{dt} \right)}^{2}}=\frac{2}{\mu }\left( E-U \right) \\
Line 43: Line 43:
Setzt man nun dieses Zeitdifferential in die Beziehung zwischen Drehimpuls und <math>\varphi </math>(5.3)Koordinate ein so erhält man.
Setzt man nun dieses Zeitdifferential in die Beziehung zwischen Drehimpuls und <math>\varphi </math>(5.3)Koordinate ein so erhält man.


:<math>d\varphi =\frac{{{L}^{2}}}{\mu {{r}^{2}}}\frac{dr}{\sqrt{\frac{2}{\mu }\left( E-U \right)}}=\frac{{{L}^{2}}}{{{r}^{2}}}\frac{dr}{\sqrt{2\mu \left( E-U \right)}}=\frac{{{L}^{2}}}{{{r}^{2}}}\frac{dr}{\sqrt{2\mu E-\frac{L_{z}^{2}}{{{r}^{2}}}+\frac{2\mu \alpha }{r}}}</math>
<math>d\varphi =\frac{{{L}^{2}}}{\mu {{r}^{2}}}\frac{dr}{\sqrt{\frac{2}{\mu }\left( E-U \right)}}=\frac{{{L}^{2}}}{{{r}^{2}}}\frac{dr}{\sqrt{2\mu \left( E-U \right)}}=\frac{{{L}^{2}}}{{{r}^{2}}}\frac{dr}{\sqrt{2\mu E-\frac{L_{z}^{2}}{{{r}^{2}}}+\frac{2\mu \alpha }{r}}}</math>
(6.3)
(6.3)
Die Stammfunktion lautet bekannter maßen :
Die Stammfunktion lautet bekannter maßen :


:<math>\varphi =\arccos \left( \frac{\frac{{{L}_{z}}}{r}-\frac{\mu \alpha }{{{L}_{Z}}}}{\sqrt{2\mu E+\frac{{{\mu }^{2}}{{\alpha }^{2}}}{L_{z}^{2}}}} \right)</math>
<math>\varphi =\arccos \left( \frac{\frac{{{L}_{z}}}{r}-\frac{\mu \alpha }{{{L}_{Z}}}}{\sqrt{2\mu E+\frac{{{\mu }^{2}}{{\alpha }^{2}}}{L_{z}^{2}}}} \right)</math>
(6.4)
(6.4)
Wir führen noch die Abkürzungen ein:
Wir führen noch die Abkürzungen ein:


:<math>p:=\frac{L_{z}^{2}}{\mu \alpha }\varepsilon :=\sqrt{1+\frac{2EL_{z}^{2}}{\mu {{\alpha }^{2}}}}</math>
<math>p:=\frac{L_{z}^{2}}{\mu \alpha }\varepsilon :=\sqrt{1+\frac{2EL_{z}^{2}}{\mu {{\alpha }^{2}}}}</math>
(6.5)
(6.5)
Damit können wir die vorherige Beziehung für <math>\varphi </math>umschreiben als:
Damit können wir die vorherige Beziehung für <math>\varphi </math>umschreiben als:


:<math>\frac{p}{r}=1+\varepsilon \cos \varphi </math>
<math>\frac{p}{r}=1+\varepsilon \cos \varphi </math>
(6.6)
(6.6)
Es sollte keine zu großen Schwierigkeiten bereiten zu erkennen, dass es sich hierbei um die Gleichung für Kegelschnitte handelt:
Es sollte keine zu großen Schwierigkeiten bereiten zu erkennen, dass es sich hierbei um die Gleichung für Kegelschnitte handelt:


:<math>\varepsilon <0</math> Ellipse
<math>\varepsilon <0</math> Ellipse
:<math>\varepsilon =0</math> Parabel
<math>\varepsilon =0</math> Parabel
:<math>\varepsilon >0</math> Hyperbel
<math>\varepsilon >0</math> Hyperbel


[[Kategorie:Mechanik]]
[[Kategorie:Mechanik]]
Please note that all contributions to testwiki are considered to be released under the Creative Commons Attribution (see Testwiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!
Cancel Editing help (opens in new window)