Editing Drehimpulsdarstellung und Streuphasen

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 1: Line 1:
<noinclude>{{Scripthinweis|Quantenmechanik|6|4}}</noinclude>
<noinclude>{{Scripthinweis|Quantenmechanik|6|4}}</noinclude>
Annahme: Kugelsymmetrisches Streupotenzial V(r)
Annahme: Kugelsymmetrisches Streupotenzial V(r )


Erforderlich ist die Umrechung der Impulsdarstellung <math>\left| {\bar{k}} \right\rangle </math> in die Drehimpulsdarstellung <math>\left| lm \right\rangle </math> freier Teilchen.
Erforderlich ist die Umrechung der Impulsdarstellung <math>\left| {\bar{k}} \right\rangle </math> in die Drehimpulsdarstellung <math>\left| lm \right\rangle </math> freier Teilchen.
Line 12: Line 12:
Die auslaufende Welle schreibt sich dann entwickelt:
Die auslaufende Welle schreibt sich dann entwickelt:


:<math>\Psi (\bar{r})=\sum\limits_{l=0}^{\infty }{{}}\frac{1}{r}{{u}_{l}}(r){{P}_{l}}(\cos \vartheta )</math>
<math>\Psi (\bar{r})=\sum\limits_{l=0}^{\infty }{{}}\frac{1}{r}{{u}_{l}}(r){{P}_{l}}(\cos \vartheta )</math>


(Mit den Legendre- Polynomen <math>{{P}_{l}}(\cos \vartheta )</math>)
(Mit den Legendre- Polynomen <math>{{P}_{l}}(\cos \vartheta )</math>)


Es können die Kugelflächenfunktionen genommen werden, die von m, also <math>\phi </math> unabhängig sind wegen des kugelsymmetrischen Potenzials es treten nur Drehimpulseigenfunktionen mit m=0 auf!
Es können die Kugelflächenfunktionen genommen werden, die von m, also <math>\phi </math> unabhängig sind wegen des kugelsymmetrischen Potenzials -> es treten nur Drehimpulseigenfunktionen mit m=0 auf !




Line 41: Line 41:
\end{align}</math>
\end{align}</math>


im asymptotischen Verhalten <math>r\to \infty </math> gewinnt man (Striche eingespart) durch Wiederholtes Anwenden der partiellen Integration:
im asymptotischen Verhalten <math>r\to \infty </math> gewinnt man ( Striche eingespart) durch Wiederholtes Anwenden der partiellen Integration:


:<math>\frac{1}{r}{{u}_{l}}(r)=\frac{2l+1}{2}\left\{ \frac{1}{ikr}\left[ {{e}^{ikr\xi }}{{P}_{l}}(\xi ) \right]_{-1}^{+1}-\frac{1}{{{\left( ikr \right)}^{2}}}\left[ {{e}^{ikr\xi }}{{P}_{l}}\acute{\ }(\xi ) \right]_{-1}^{+1}+\frac{1}{{{\left( ikr \right)}^{3}}}\left[ {{e}^{ikr\xi }}{{P}_{l}}\acute{\ }\acute{\ }(\xi ) \right]_{-1}^{+1}+... \right\}</math>
:<math>\frac{1}{r}{{u}_{l}}(r)=\frac{2l+1}{2}\left\{ \frac{1}{ikr}\left[ {{e}^{ikr\xi }}{{P}_{l}}(\xi ) \right]_{-1}^{+1}-\frac{1}{{{\left( ikr \right)}^{2}}}\left[ {{e}^{ikr\xi }}{{P}_{l}}\acute{\ }(\xi ) \right]_{-1}^{+1}+\frac{1}{{{\left( ikr \right)}^{3}}}\left[ {{e}^{ikr\xi }}{{P}_{l}}\acute{\ }\acute{\ }(\xi ) \right]_{-1}^{+1}+... \right\}</math>
Line 79: Line 79:




:<math>{{\Psi }_{e}}(\bar{r})=\sum\limits_{l=0}^{\infty }{{}}\frac{1}{r}{{u}_{l}}(r){{P}_{l}}(\cos \vartheta )</math> ist Lösung der freien Schrödingergleichung.
<math>{{\Psi }_{e}}(\bar{r})=\sum\limits_{l=0}^{\infty }{{}}\frac{1}{r}{{u}_{l}}(r){{P}_{l}}(\cos \vartheta )</math> ist Lösung der freien Schrödingergleichung.


:<math>\left( -\frac{{{\hbar }^{2}}}{2m}\Delta -E \right){{\Psi }_{e}}=0</math>
:<math>\left( -\frac{{{\hbar }^{2}}}{2m}\Delta -E \right){{\Psi }_{e}}=0</math>
Line 113: Line 113:
:<math>\frac{1}{r}{{u}_{l}}(r)=\frac{2l+1}{{{(-i)}^{l}}}{{j}_{l}}(kr)</math>
:<math>\frac{1}{r}{{u}_{l}}(r)=\frac{2l+1}{{{(-i)}^{l}}}{{j}_{l}}(kr)</math>


Also die sphärischen Besselfunktionen!
Also die sphärischen Besselfunktionen !


Die radialen Lösungen für das Streuproblem (Entwicklungsterme für die einfallende Welle) sind die sphärischen Besselfunktionen
Die radialen Lösungen für das Streuproblem ( Entwicklungsterme für die einfallende Welle) sind die sphärischen Besselfunktionen




Line 132: Line 132:
Es folgt:
Es folgt:


:<math>f(\vartheta )=\sum\limits_{l=0}^{\infty }{{{f}_{l}}}{{P}_{l}}(\cos \vartheta )</math>
<math>f(\vartheta )=\sum\limits_{l=0}^{\infty }{{{f}_{l}}}{{P}_{l}}(\cos \vartheta )</math>


Setzen wir dies in den {{FB|Wirkungsquerschnitt}} ein, so folgt für den totalen Wirkungsquerschnitt
Setzen wir dies in den {{FB|Wirkungsquerschnitt}} ein, so folgt für den totalen Wirkungsquerschnitt
Line 144: Line 144:
\end{array}</math>
\end{array}</math>


Man spricht in diesem Fall von einer Entwicklung nach {{FB|Partialwellen}}, l=0,1,2,3...
Man spricht in diesem Fall von einer Entwicklung nach {{FB|Partialwellen}} , l=0,1,2,3...


:<math>{{\sigma }_{l}}=\frac{4\pi }{2l+1}{{\left| {{f}_{l}} \right|}^{2}}</math>
:<math>{{\sigma }_{l}}=\frac{4\pi }{2l+1}{{\left| {{f}_{l}} \right|}^{2}}</math>
Line 198: Line 198:


Bei genügend kleinen Energien <math>E=\frac{{{\hbar }^{2}}{{{\bar{k}}}^{2}}}{2m}</math>
Bei genügend kleinen Energien <math>E=\frac{{{\hbar }^{2}}{{{\bar{k}}}^{2}}}{2m}</math>
werden nur die niedrigsten Partialwellen (für kleine l) gestreut.
werden nur die niedrigsten Partialwellen ( für kleine l) gestreut.
Denn:
Denn:
in<math>\sigma =\sum\limits_{l}{{{\sigma }_{l}}=\sum\limits_{l}{{}}}\frac{4\pi }{{{k}^{2}}}\left( 2l+1 \right){{\sin }^{2}}{{\delta }_{l}}</math>
in<math>\sigma =\sum\limits_{l}{{{\sigma }_{l}}=\sum\limits_{l}{{}}}\frac{4\pi }{{{k}^{2}}}\left( 2l+1 \right){{\sin }^{2}}{{\delta }_{l}}</math>


tragen nur die l mit <math>l\le ka</math> bei.
tragen nur die l mit <math>l\le ka</math> bei.
Dabei ist a  die Reichweite des Potenzials!
Dabei ist a  die Reichweite des Potenzials !
Grund (aus semiklassischer Betrachtung):
Grund (aus semiklassischer Betrachtung):
Es falle ein Teilchen mit <math>\bar{p}=\hbar \bar{k}</math>
Es falle ein Teilchen mit <math>\bar{p}=\hbar \bar{k}</math>
Line 213: Line 213:
Stoßparameter <math>b=\frac{\sqrt{l(l+1)}}{k}\le a\Rightarrow l\approx \sqrt{l(l+1)}\le ka</math>
Stoßparameter <math>b=\frac{\sqrt{l(l+1)}}{k}\le a\Rightarrow l\approx \sqrt{l(l+1)}\le ka</math>


Die Beziehungen gelten jedoch nur näherungsweise!
Die Beziehungen gelten jedoch nur näherungsweise !
Das folgende Bild zeigt die Streuwelle <math>{{\Psi }_{S}}(\bar{r})=f(\vartheta )\frac{{{e}^{ikr}}}{r}</math> für die Streuung einer ebenen Welle <math>{{e}^{ikz}}</math> an einem abstoßenden Potenzial.
Das folgende Bild zeigt die Streuwelle <math>{{\Psi }_{S}}(\bar{r})=f(\vartheta )\frac{{{e}^{ikr}}}{r}</math> für die Streuung einer ebenen Welle <math>{{e}^{ikz}}</math> an einem abstoßenden Potenzial.


Hier ist der Verlauf der Streuquerschnitte <math>{{\sigma }_{l}}</math> der jeweils l-ten Partialwelle zu sehen:
Hier ist der Verlauf der Streuquerschnitte <math>{{\sigma }_{l}}</math> der jeweils l-ten Partialwelle zu sehen:
Please note that all contributions to testwiki are considered to be released under the Creative Commons Attribution (see Testwiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!
Cancel Editing help (opens in new window)