Editing Drehimpuls- Eigenzustände

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 5: Line 5:
In Komponenten:<math>{{\hat{L}}_{j}}={{\varepsilon }_{jkl}}{{\hat{r}}_{k}}{{\hat{p}}_{l}}</math>
In Komponenten:<math>{{\hat{L}}_{j}}={{\varepsilon }_{jkl}}{{\hat{r}}_{k}}{{\hat{p}}_{l}}</math>


:<math>\hat{\bar{L}}=\hat{\bar{r}}\times \hat{\bar{p}}</math>
<math>\hat{\bar{L}}=\hat{\bar{r}}\times \hat{\bar{p}}</math>


ist hermitesch:<math>{{\hat{L}}_{j}}^{+}={{\varepsilon }_{jkl}}{{\left( {{{\hat{r}}}_{k}}{{{\hat{p}}}_{l}} \right)}^{+}}={{\varepsilon }_{jkl}}{{\hat{p}}_{l}}^{+}{{\hat{r}}_{k}}^{+}={{\varepsilon }_{jkl}}{{\hat{p}}_{l}}{{\hat{r}}_{k}}={{\varepsilon }_{jkl}}{{\hat{r}}_{k}}{{\hat{p}}_{l}}</math>
ist hermitesch:<math>{{\hat{L}}_{j}}^{+}={{\varepsilon }_{jkl}}{{\left( {{{\hat{r}}}_{k}}{{{\hat{p}}}_{l}} \right)}^{+}}={{\varepsilon }_{jkl}}{{\hat{p}}_{l}}^{+}{{\hat{r}}_{k}}^{+}={{\varepsilon }_{jkl}}{{\hat{p}}_{l}}{{\hat{r}}_{k}}={{\varepsilon }_{jkl}}{{\hat{r}}_{k}}{{\hat{p}}_{l}}</math>
Line 11: Line 11:
<u>'''Vertauschungs- Relationen:'''</u>
<u>'''Vertauschungs- Relationen:'''</u>


:<math>\begin{align}
<math>\begin{align}
   & \left[ {{{\hat{L}}}_{1}},{{{\hat{L}}}_{2}} \right]=\left[ \left( {{{\hat{r}}}_{2}}{{{\hat{p}}}_{3}}-{{{\hat{r}}}_{3}}{{{\hat{p}}}_{2}} \right),\left( {{{\hat{r}}}_{3}}{{{\hat{p}}}_{1}}-{{{\hat{r}}}_{1}}{{{\hat{p}}}_{3}} \right) \right]={{{\hat{r}}}_{2}}{{{\hat{p}}}_{3}}{{{\hat{r}}}_{3}}{{{\hat{p}}}_{1}}-{{{\hat{r}}}_{2}}{{{\hat{p}}}_{3}}{{{\hat{r}}}_{1}}{{{\hat{p}}}_{3}}-{{{\hat{r}}}_{3}}{{{\hat{p}}}_{2}}{{{\hat{r}}}_{3}}{{{\hat{p}}}_{1}}+{{{\hat{r}}}_{3}}{{{\hat{p}}}_{2}}{{{\hat{r}}}_{1}}{{{\hat{p}}}_{3}}-{{{\hat{r}}}_{3}}{{{\hat{p}}}_{1}}{{{\hat{r}}}_{2}}{{{\hat{p}}}_{3}}+{{{\hat{r}}}_{3}}{{{\hat{p}}}_{1}}{{{\hat{r}}}_{3}}{{{\hat{p}}}_{2}}+{{{\hat{r}}}_{1}}{{{\hat{p}}}_{3}}{{{\hat{r}}}_{2}}{{{\hat{p}}}_{3}}-{{{\hat{r}}}_{1}}{{{\hat{p}}}_{3}}{{{\hat{r}}}_{3}}{{{\hat{p}}}_{2}} \\  
   & \left[ {{{\hat{L}}}_{1}},{{{\hat{L}}}_{2}} \right]=\left[ \left( {{{\hat{r}}}_{2}}{{{\hat{p}}}_{3}}-{{{\hat{r}}}_{3}}{{{\hat{p}}}_{2}} \right),\left( {{{\hat{r}}}_{3}}{{{\hat{p}}}_{1}}-{{{\hat{r}}}_{1}}{{{\hat{p}}}_{3}} \right) \right]={{{\hat{r}}}_{2}}{{{\hat{p}}}_{3}}{{{\hat{r}}}_{3}}{{{\hat{p}}}_{1}}-{{{\hat{r}}}_{2}}{{{\hat{p}}}_{3}}{{{\hat{r}}}_{1}}{{{\hat{p}}}_{3}}-{{{\hat{r}}}_{3}}{{{\hat{p}}}_{2}}{{{\hat{r}}}_{3}}{{{\hat{p}}}_{1}}+{{{\hat{r}}}_{3}}{{{\hat{p}}}_{2}}{{{\hat{r}}}_{1}}{{{\hat{p}}}_{3}}-{{{\hat{r}}}_{3}}{{{\hat{p}}}_{1}}{{{\hat{r}}}_{2}}{{{\hat{p}}}_{3}}+{{{\hat{r}}}_{3}}{{{\hat{p}}}_{1}}{{{\hat{r}}}_{3}}{{{\hat{p}}}_{2}}+{{{\hat{r}}}_{1}}{{{\hat{p}}}_{3}}{{{\hat{r}}}_{2}}{{{\hat{p}}}_{3}}-{{{\hat{r}}}_{1}}{{{\hat{p}}}_{3}}{{{\hat{r}}}_{3}}{{{\hat{p}}}_{2}} \\  
  & ={{{\hat{r}}}_{2}}{{{\hat{p}}}_{3}}{{{\hat{r}}}_{3}}{{{\hat{p}}}_{1}}-{{{\hat{r}}}_{1}}{{{\hat{p}}}_{3}}{{{\hat{r}}}_{3}}{{{\hat{p}}}_{2}}+{{{\hat{r}}}_{3}}{{{\hat{p}}}_{2}}{{{\hat{r}}}_{1}}{{{\hat{p}}}_{3}}-{{{\hat{r}}}_{3}}{{{\hat{p}}}_{1}}{{{\hat{r}}}_{2}}{{{\hat{p}}}_{3}}={{{\hat{r}}}_{2}}{{{\hat{p}}}_{3}}{{{\hat{r}}}_{3}}{{{\hat{p}}}_{1}}-{{{\hat{r}}}_{2}}{{{\hat{r}}}_{3}}{{{\hat{p}}}_{3}}{{{\hat{p}}}_{1}}+{{{\hat{r}}}_{1}}{{{\hat{r}}}_{3}}{{{\hat{p}}}_{3}}{{{\hat{p}}}_{2}}-{{{\hat{r}}}_{1}}{{{\hat{p}}}_{3}}{{{\hat{r}}}_{3}}{{{\hat{p}}}_{2}} \\  
  & ={{{\hat{r}}}_{2}}{{{\hat{p}}}_{3}}{{{\hat{r}}}_{3}}{{{\hat{p}}}_{1}}-{{{\hat{r}}}_{1}}{{{\hat{p}}}_{3}}{{{\hat{r}}}_{3}}{{{\hat{p}}}_{2}}+{{{\hat{r}}}_{3}}{{{\hat{p}}}_{2}}{{{\hat{r}}}_{1}}{{{\hat{p}}}_{3}}-{{{\hat{r}}}_{3}}{{{\hat{p}}}_{1}}{{{\hat{r}}}_{2}}{{{\hat{p}}}_{3}}={{{\hat{r}}}_{2}}{{{\hat{p}}}_{3}}{{{\hat{r}}}_{3}}{{{\hat{p}}}_{1}}-{{{\hat{r}}}_{2}}{{{\hat{r}}}_{3}}{{{\hat{p}}}_{3}}{{{\hat{p}}}_{1}}+{{{\hat{r}}}_{1}}{{{\hat{r}}}_{3}}{{{\hat{p}}}_{3}}{{{\hat{p}}}_{2}}-{{{\hat{r}}}_{1}}{{{\hat{p}}}_{3}}{{{\hat{r}}}_{3}}{{{\hat{p}}}_{2}} \\  
Line 86: Line 86:
'''Vertauschungsrelationen<math>'''\left[ {{{\hat{L}}}_{+}},{{{\hat{L}}}_{3}} \right]=\left[ {{{\hat{L}}}_{1}},{{{\hat{L}}}_{3}} \right]+i\left[ {{{\hat{L}}}_{2}},{{{\hat{L}}}_{3}} \right]=-i\hbar {{\hat{L}}_{2}}-\hbar {{\hat{L}}_{1}}=-\hbar \left( {{{\hat{L}}}_{1}}+i{{{\hat{L}}}_{2}} \right)</math>
'''Vertauschungsrelationen<math>'''\left[ {{{\hat{L}}}_{+}},{{{\hat{L}}}_{3}} \right]=\left[ {{{\hat{L}}}_{1}},{{{\hat{L}}}_{3}} \right]+i\left[ {{{\hat{L}}}_{2}},{{{\hat{L}}}_{3}} \right]=-i\hbar {{\hat{L}}_{2}}-\hbar {{\hat{L}}_{1}}=-\hbar \left( {{{\hat{L}}}_{1}}+i{{{\hat{L}}}_{2}} \right)</math>


:<math>\begin{align}
<math>\begin{align}


& \left[ {{{\hat{L}}}_{+}},{{{\hat{L}}}_{3}} \right]=-\hbar {{{\hat{L}}}_{+}} \\
& \left[ {{{\hat{L}}}_{+}},{{{\hat{L}}}_{3}} \right]=-\hbar {{{\hat{L}}}_{+}} \\
Line 134: Line 134:
:
:


:<math>{{\hat{L}}^{2}}={{\hat{L}}_{1}}^{2}+{{\hat{L}}_{2}}^{2}+{{\hat{L}}_{3}}^{2}={{\hat{L}}_{3}}^{2}+{{\hat{L}}_{+}}{{\hat{L}}_{-}}-\hbar {{\hat{L}}_{3}}</math>
<math>{{\hat{L}}^{2}}={{\hat{L}}_{1}}^{2}+{{\hat{L}}_{2}}^{2}+{{\hat{L}}_{3}}^{2}={{\hat{L}}_{3}}^{2}+{{\hat{L}}_{+}}{{\hat{L}}_{-}}-\hbar {{\hat{L}}_{3}}</math>


Warum ?
Warum ?
Line 173: Line 173:
gehorchen den Eigenwertgleichungen<math>{{\hat{L}}^{2}}\left| a,b \right\rangle =a\left| a,b \right\rangle </math>
gehorchen den Eigenwertgleichungen<math>{{\hat{L}}^{2}}\left| a,b \right\rangle =a\left| a,b \right\rangle </math>


:<math>{{\hat{L}}_{3}}\left| a,b \right\rangle =b\left| a,b \right\rangle </math>
<math>{{\hat{L}}_{3}}\left| a,b \right\rangle =b\left| a,b \right\rangle </math>


Prinzipiell: Für alle Observablen müssen wir Quantenzahlen einführen. Zum formalen Vorgehen schreibt man diese Quantenzahlen einfach in einen Zustandsvektor. Diese Quantenzahlen sind Eigenwerte der Observablen, also mögliche Messwerte. Unser formaler Zustand aus Quantenzahlen ist per Definition ein Eigenvektor zu diesen Quantenzahlen.
Prinzipiell: Für alle Observablen müssen wir Quantenzahlen einführen. Zum formalen Vorgehen schreibt man diese Quantenzahlen einfach in einen Zustandsvektor. Diese Quantenzahlen sind Eigenwerte der Observablen, also mögliche Messwerte. Unser formaler Zustand aus Quantenzahlen ist per Definition ein Eigenvektor zu diesen Quantenzahlen.
Line 382: Line 382:
'''0'''
'''0'''
'''0'''
'''0'''
:<math>\frac{1}{2}</math>
<math>\frac{1}{2}</math>
<math>\hbar \sqrt{\frac{3}{4}}</math>
<math>\hbar \sqrt{\frac{3}{4}}</math>
<math>-\frac{1}{2},+\frac{1}{2}</math>
<math>-\frac{1}{2},+\frac{1}{2}</math>
Line 390: Line 390:
<math>-1,0,1</math>
<math>-1,0,1</math>


:<math>\frac{3}{2}</math>
<math>\frac{3}{2}</math>
<math>\hbar \sqrt{\frac{15}{4}}</math>
<math>\hbar \sqrt{\frac{15}{4}}</math>
<math>-\frac{3}{2},-\frac{1}{2},\frac{1}{2},\frac{3}{2}</math>
<math>-\frac{3}{2},-\frac{1}{2},\frac{1}{2},\frac{3}{2}</math>


:<math>\begin{align}
<math>\begin{align}


& {{{\hat{L}}}^{2}}\left| l,m \right\rangle ={{\hbar }^{2}}l(l+1)\left| l,m \right\rangle  \\
& {{{\hat{L}}}^{2}}\left| l,m \right\rangle ={{\hbar }^{2}}l(l+1)\left| l,m \right\rangle  \\
Please note that all contributions to testwiki are considered to be released under the Creative Commons Attribution (see Testwiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!
Cancel Editing help (opens in new window)