Editing
Dirac-Gleichung und Spin: nichtrelativistischer Grenzfall
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
<noinclude>{{ScriptProf|Kapitel=1|Abschnitt=5|Prof=Prof. Dr. T. Brandes|Thema=Quantenmechanik|Schreiber=Moritz Schubotz}}</noinclude> Mit (Vektor) Potential haben wir die {{FB|Dirac-Gleichung|Elektromagnetismus}} als {{NumBlk|:| :<math>\mathfrak{i} {{\partial }_{t}}\Psi =\left( \underline{\alpha }\left( \underline{\hat{p}}-e\underline{A} \right)+\beta m+e\phi \right)\Psi ,\quad \hbar =c=1</math> : |(1.37)|RawN=.}} Jetzt erfolgt die Zerlegung <math>\Psi =\left( \begin{align} & \varphi \\ & \chi \\ \end{align} \right)\underbrace{{{e}^{-\mathfrak{i} mt}}}_{\text{Ruheenergie-Phasenfaktor}}=\left( \begin{align} & \varphi \\ & \chi \\ \end{align} \right){{e}^{\frac{-\mathfrak{i} m{{c}^{2}}t}{\hbar }}}</math>, mit den 2er Spinoren :<math>\varphi =\left( \begin{align} & {{\varphi }_{1}} \\ & {{\varphi }_{2}} \\ \end{align} \right),\quad \chi =\left( \begin{align} & {{\chi }_{1}} \\ & {{\chi }_{2}} \\ \end{align} \right).</math> Damit folgt dann {{NumBlk|:| :<math>\mathfrak{i} {{\partial }_{t}}\left( \begin{align} & \varphi \\ & \chi \\ \end{align} \right)=\left( \begin{align} & \underline{\sigma }\left( \underline{\hat{p}}-e\underline{A} \right)\chi \\ & \underline{\sigma }\left( \underline{\hat{p}}-e\underline{A} \right)\varphi \\ \end{align} \right)+e\phi \left( \begin{align} & \varphi \\ & \chi \\ \end{align} \right)-2m{{c}^{2}}\left( \begin{align} & 0 \\ & \chi \\ \end{align} \right)</math> : |(1.38)|RawN=.}} Beachte das jetzt überall <math>\varphi =\varphi \left( \underline{x},t \right)</math>gilt Jetzt: Näherung/Annahme das <u>kinetische und potentielle Energie viel kleiner als Ruhemasse</u> <math>m{{c}^{2}}</math> ist {{NumBlk|:| :<math>\begin{align} & mc{{\chi }^{2}}\gg \left| i\hbar {{\partial }_{t}}\chi \right|,\quad mc{{\chi }^{2}}\gg \left| e\phi \varphi \right| \\ & \Rightarrow \chi \approx \frac{1}{2m{{c}^{2}}}\underline{\sigma }\left( \underline{p}-e\underline{A} \right)\varphi \\ \end{align}</math> : |(1.39)|RawN=.}} einsetzen in die Gleichung (1.38) liefert {{NumBlk|:| <math>i{{\partial }_{t}}\varphi =\frac{1}{2m}\left( \underline{\sigma }{{\left( \underline{p}-e\underline{A} \right)}^{2}} \right)\varphi +e\phi \varphi </math> |(1.40)|RawN=.}} Jetzt folgendes „Theorem“ benutzen {{NumBlk|:| :<math>\begin{align} \left( \underline{\sigma }\underline{A} \right)\left( \underline{\sigma }\underline{B} \right)=\underline{A}\underline{B}\underline{\underline{1}}+\mathfrak{i} \underline{\sigma }\left( \underline{A}\times \underline{B} \right) \\ \end{align} </math> : |(1.41)|RawN=.}} mit :<math>\begin{align} \underline{A}=\left( {{A}_{1}},{{A}_{2}},{{A}_{3}} \right),\underline{B}=\left( {{B}_{1}},{{B}_{2}},{{B}_{3}} \right),\underline{A},\underline{B} \text{ vektorwertiger Operator und} \\ \underline{\sigma }=\left( {{{\underline{\underline{\sigma }}}}_{1}},{{{\underline{\underline{\sigma }}}}_{2}},{{{\underline{\underline{\sigma }}}}_{3}} \right) \text{Vektor der Pauli-Matrizen} \\ \end{align} </math> Beweis von (1.41) mittels (Anti) {{FB|Kommutator-Eigenschaften}} <font color="#3399FF">'''''(AUFGABE)'''''</FONT> {{NumBlk|:| :<math>\begin{align} & \left\{ {{{\underline{\underline{\sigma }}}}_{i}},{{{\underline{\underline{\sigma }}}}_{j}} \right\}:={{{\underline{\underline{\sigma }}}}_{i}}{{{\underline{\underline{\sigma }}}}_{j}}+{{{\underline{\underline{\sigma }}}}_{j}}{{{\underline{\underline{\sigma }}}}_{i}}=2{{\delta }_{ij}}\underline{\underline{1}} \\ & \left[ {{{\underline{\underline{\sigma }}}}_{i}},{{{\underline{\underline{\sigma }}}}_{j}} \right]:={{{\underline{\underline{\sigma }}}}_{i}}{{{\underline{\underline{\sigma }}}}_{j}}-{{{\underline{\underline{\sigma }}}}_{j}}{{{\underline{\underline{\sigma }}}}_{i}}=2\mathfrak{i} {{\varepsilon }_{ijk}}{{{\underline{\underline{\sigma }}}}_{k}} \\ \end{align}</math>|(1.42)|RawN=.}} Es gilt weiterhin <font color="#3399FF">(AUFGABE)</FONT>, beachte <math>\underline{p}=\frac{\hbar }{\mathfrak{i} }\underline{\nabla }</math> und <math>\underline{A}=\underline{A}\left( \underline{x},t \right)</math> {{NumBlk|:| <math>\left( \underline{p}-e\underline{A} \right)\times \left( \underline{p}-e\underline{A} \right)=-\frac{e\hbar }{\mathfrak{i} }\underbrace{\left( \underline{\nabla }\times \underline{A} \right)}_{\text{Magnetfeld}}=-\frac{e\hbar }{\mathfrak{i} }\underbrace{{\underline{B}}}_{\text{Magnetfeld}}</math> |(1.43)|RawN=.}} Mit (1.43) folgt aus (1.41) die Kopplung von Spin und Magnetfeld {{NumBlk|:|{{FB|Pauli-Gleichung}} <math>i{{\partial }_{t}}\varphi =\left[ \frac{1}{2m}{{\left( \underline{p}-e\underline{A} \right)}^{2}}-\underbrace{\frac{e\hbar }{2m}\underline{\sigma }.\underline{B}}_{\text{Pauli-Term}}+e\phi \right]\varphi </math> |(1.44)|RawN=.}} mit dem 2-Komponentigen Spinor <math>\varphi =\left( \begin{align} & {{\varphi }_{1}} \\ & {{\varphi }_{2}} \\ \end{align} \right)</math> ==siehe auch== [[Der_nichtrelativistische_Grenzfall#Nichtrelativistische_Näherung:]] <noinclude>==Literatur== <FONT COLOR="#FFBF00">'''LITERATUR: GREINER'''</FONT></noinclude>
Summary:
Please note that all contributions to testwiki are considered to be released under the Creative Commons Attribution (see
Testwiki:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Templates used on this page:
Template:Anker
(
edit
)
Template:Anker/code
(
edit
)
Template:FB
(
edit
)
Template:NumBlk
(
edit
)
Template:ScriptProf
(
edit
)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
Edit source
View history
More
Search
Navigation
Main page
Recent changes
Random page
Physikerwelt
Tools
What links here
Related changes
Special pages
Page information
In other projects