Editing
Das Wasserstoffatom (relativistsich)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
<noinclude>{{Scripthinweis|Quantenmechanik|7|5}}</noinclude> In einem rotationssymmetrischen Potenzial haben wir als Dirac- Hamiltonian: :<math>\begin{align} & H=\left( c\bar{\alpha }\bar{p}+{{m}_{0}}{{c}^{2}}\beta +V(r) \right) \\ & {{p}_{r}}:=\frac{1}{r}\left( \bar{r}\bar{p}-i\hbar \right) \\ & {{\alpha }_{r}}:=\frac{1}{r}\bar{\alpha }\bar{r} \\ & \hbar Q:=\beta \left( \tilde{\bar{\sigma }}\bar{L}+\hbar \right) \\ \end{align}</math> Dabei sind <math>{{p}_{r}},{{\alpha }_{r}},\hbar Q</math> hermitesche Operatoren Man kann den Hamilton- Operator schreiben als: :<math>H=\left( c{{\alpha }_{r}}{{p}_{r}}+\frac{ic}{r}{{\alpha }_{r}}\beta \hbar Q+{{m}_{0}}{{c}^{2}}\beta +V(r) \right)</math> Beweis: :<math>\begin{align} & {{\alpha }_{r}}{{p}_{r}}+\frac{i}{r}{{\alpha }_{r}}\beta \hbar Q={{\alpha }_{r}}\left[ \frac{1}{r}\left( \bar{r}\bar{p}-i\hbar \right)+\frac{i}{r}{{\beta }^{2}}\left( \tilde{\bar{\sigma }}\bar{L}+\hbar \right) \right] \\ & {{\beta }^{2}}=1 \\ & =\frac{{{\alpha }_{r}}}{r}\left( \bar{r}\bar{p}+i\tilde{\bar{\sigma }}\bar{L} \right)=\frac{1}{{{r}^{2}}}\left[ \left( \bar{\alpha }\bar{r} \right)\left( \bar{r}\bar{p} \right)+i\left( \bar{\alpha }\bar{r} \right)\left( \tilde{\bar{\sigma }}\bar{L} \right) \right] \\ & i\left( \bar{\alpha }\bar{r} \right)\left( \tilde{\bar{\sigma }}\bar{L} \right)=i\left( \bar{\alpha }\bar{r} \right)\left( \bar{r}\bar{p} \right)-i{{r}^{2}}\left( \bar{\alpha }\bar{p} \right) \\ & \Rightarrow {{\alpha }_{r}}{{p}_{r}}+\frac{i}{r}{{\alpha }_{r}}\beta \hbar Q=\frac{1}{{{r}^{2}}}\left[ \left( \bar{\alpha }\bar{r} \right)\left( \bar{r}\bar{p} \right)+i\left( \bar{\alpha }\bar{r} \right)\left( \tilde{\bar{\sigma }}\bar{L} \right) \right]=\bar{\alpha }\bar{p} \\ \end{align}</math> Es gilt weiter: :<math>\left[ \hbar Q,H \right]=0</math> . Somit existieren gemeinsame Eigenzustände zu <math>H</math> und <math>\hbar Q</math> '''Eigenwerte von '''<math>\hbar Q</math> : :<math>\begin{align} & {{\left( \hbar Q \right)}^{2}}=\beta \left( \tilde{\bar{\sigma }}\bar{L}+\hbar \right)\beta \left( \tilde{\bar{\sigma }}\bar{L}+\hbar \right)={{\beta }^{2}}{{\left( \tilde{\bar{\sigma }}\bar{L}+\hbar \right)}^{2}} \\ & \left[ \beta ,\tilde{\bar{\sigma }} \right]=0=\left( \begin{matrix} \left[ 1,\tilde{\bar{\sigma }} \right] & {} \\ {} & -\left[ 1,\tilde{\bar{\sigma }} \right] \\ \end{matrix} \right) \\ & {{\beta }^{2}}=1 \\ & \Rightarrow {{\left( \hbar Q \right)}^{2}}=\left( \tilde{\bar{\sigma }}\bar{L} \right)\left( \tilde{\bar{\sigma }}\bar{L} \right)+2\hbar \left( \tilde{\bar{\sigma }}\bar{L} \right)+{{\hbar }^{2}} \\ & \left( \tilde{\bar{\sigma }}\bar{L} \right)\left( \tilde{\bar{\sigma }}\bar{L} \right)={{L}^{2}}+i\tilde{\bar{\sigma }}\left( \bar{L}\times \bar{L} \right) \\ & \left( \bar{L}\times \bar{L} \right)=i\hbar \bar{L} \\ & \Rightarrow \left( \tilde{\bar{\sigma }}\bar{L} \right)\left( \tilde{\bar{\sigma }}\bar{L} \right)={{L}^{2}}-\hbar \tilde{\bar{\sigma }}(\bar{L}) \\ \end{align}</math> Somit: :<math>\begin{align} & {{\left( \hbar Q \right)}^{2}}={{L}^{2}}+\hbar \tilde{\bar{\sigma }}\bar{L}+{{\hbar }^{2}}={{\left( \bar{L}+\frac{\hbar }{2}\tilde{\bar{\sigma }} \right)}^{2}}+\frac{{{\hbar }^{2}}}{4} \\ & mit\ {{\left( \bar{L}+\frac{\hbar }{2}\tilde{\bar{\sigma }} \right)}^{2}}={{L}^{2}}+\hbar \tilde{\bar{\sigma }}\bar{L}+\frac{{{\hbar }^{2}}}{4}{{{\tilde{\bar{\sigma }}}}^{2}} \\ & {{{\tilde{\bar{\sigma }}}}^{2}}=3 \\ & \left( \bar{L}+\frac{\hbar }{2}\tilde{\bar{\sigma }} \right)=\bar{J} \\ \end{align}</math> Schließlich also :<math>{{\left( \hbar Q \right)}^{2}}={{\bar{J}}^{2}}+\frac{{{\hbar }^{2}}}{4}</math> Die Eigenwerte von <math>{{\bar{J}}^{2}}</math> sind jedoch bekannt, nämlich <math>\hbar j\left( j+1 \right)</math> mit <math>j=l\pm s=\frac{1}{2},\frac{3}{2},...</math> :<math>\begin{align} & {{\left( \hbar Q \right)}^{2}}\left| j \right\rangle =\left( {{\hbar }^{2}}j(j+1)+\frac{{{\hbar }^{2}}}{4} \right)\left| j \right\rangle ={{\hbar }^{2}}{{(j+\frac{1}{2})}^{2}}\left| j \right\rangle \\ & {{(j+\frac{1}{2})}^{2}}:={{q}^{2}} \\ \end{align}</math> Somit: :<math>\begin{align} & \left( \hbar Q \right)\left| j \right\rangle =\left( \hbar q \right)\left| j \right\rangle \\ & q=\pm 1,\pm 2,... \\ \end{align}</math> Es bleibt das radiale Eigenwertproblem für :<math>H=\left( c{{\alpha }_{r}}{{p}_{r}}+\frac{ic}{r}{{\alpha }_{r}}\beta \hbar Q+{{m}_{0}}{{c}^{2}}\beta +V(r) \right)</math> '''Geeignete Darstellung für '''<math>{{\alpha }_{r}}</math> : :<math>\begin{align} & {{\left( {{\alpha }_{r}} \right)}^{2}}=\frac{1}{{{r}^{2}}}\left( \bar{\alpha }\bar{r} \right)\left( \bar{\alpha }\bar{r} \right)=\frac{1}{{{r}^{2}}}{{\alpha }^{\mu }}{{\alpha }^{\nu }}{{x}^{\mu }}{{x}^{\nu }}=\frac{1}{2{{r}^{2}}}\left( {{\alpha }^{\mu }}{{\alpha }^{\nu }}+{{\alpha }^{\nu }}{{\alpha }^{\mu }} \right){{x}^{\mu }}{{x}^{\nu }} \\ & \left( {{\alpha }^{\mu }}{{\alpha }^{\nu }}+{{\alpha }^{\nu }}{{\alpha }^{\mu }} \right)=2{{\delta }^{\mu \nu }} \\ & \frac{1}{2{{r}^{2}}}2{{x}^{\mu }}{{x}^{\mu }}=\frac{{{r}^{2}}}{{{r}^{2}}}=1 \\ & {{\alpha }_{r}}\beta +\beta {{\alpha }_{r}}=\frac{1}{r}\left( \bar{\alpha }\beta +\beta \bar{\alpha } \right)\bar{r} \\ & \left( \bar{\alpha }\beta +\beta \bar{\alpha } \right)=0\Rightarrow \frac{1}{r}\left( \bar{\alpha }\beta +\beta \bar{\alpha } \right)\bar{r}=0 \\ \end{align}</math> Für :<math>\beta =\left( \begin{matrix} 1 & 0 \\ 0 & -1 \\ \end{matrix} \right)</math> kann dies durch die Darstellung <math>{{\alpha }_{r}}=\left( \begin{matrix} 0 & -i \\ i & 0 \\ \end{matrix} \right)</math> mit <math>{{\alpha }_{r}}={{\alpha }_{r}}^{+}</math> erfüllt werden: :<math>\begin{align} & {{\alpha }_{r}}\beta =\left( \begin{matrix} 0 & i \\ i & 0 \\ \end{matrix} \right) \\ & \beta {{\alpha }_{r}}=\left( \begin{matrix} 0 & -i \\ -i & 0 \\ \end{matrix} \right) \\ \end{align}</math> Es gilt: :<math>\begin{align} & {{p}_{r}}=\frac{1}{r}\left( \bar{r}\bar{p}-i\hbar \right) \\ & \bar{r}\bar{p}=\frac{\hbar }{i}r\frac{\partial }{\partial r} \\ & {{p}_{r}}=\frac{1}{r}\left( \frac{\hbar }{i}r\frac{\partial }{\partial r}-i\hbar \right)=-i\hbar \left( \frac{\partial }{\partial r}+\frac{1}{r} \right) \\ \end{align}</math> Also :<math>H=\hbar c\left( \begin{matrix} 0 & -1 \\ 1 & 0 \\ \end{matrix} \right)\left( \frac{\partial }{\partial r}+\frac{1}{r} \right)-\frac{c\hbar q}{r}\left( \begin{matrix} 0 & 1 \\ 1 & 0 \\ \end{matrix} \right)+{{m}_{0}}{{c}^{2}}\left( \begin{matrix} 1 & 0 \\ 0 & -1 \\ \end{matrix} \right)+V\left( \begin{matrix} 1 & 0 \\ 0 & 1 \\ \end{matrix} \right)</math> Ansatz für den Radialanteil :<math>\left( \begin{matrix} {{\phi }_{a}} \\ {{\phi }_{b}} \\ \end{matrix} \right)\tilde{\ }\frac{1}{r}\left( \begin{matrix} F(r) \\ G(r) \\ \end{matrix} \right)</math> Eingesetzt in die Eigenwertgleichung für H: :<math>\left( \begin{matrix} {{\phi }_{a}} \\ {{\phi }_{b}} \\ \end{matrix} \right)\tilde{\ }\frac{1}{r}\left( \begin{matrix} F(r) \\ G(r) \\ \end{matrix} \right)</math> folgt: :<math>\begin{align} & -\frac{\hbar c}{r}\frac{dG}{dr}-\frac{c\hbar q}{{{r}^{2}}}G+\frac{{{m}_{0}}{{c}^{2}}}{r}F+\frac{V}{r}F=E\frac{F}{r} \\ & \frac{\hbar c}{r}\frac{dF}{dr}-\frac{c\hbar q}{{{r}^{2}}}F-\frac{{{m}_{0}}{{c}^{2}}}{r}G+\frac{V}{r}G=E\frac{G}{r} \\ & V=-\frac{{{e}^{2}}}{4\pi {{\varepsilon }_{0}}}\frac{1}{r} \\ \end{align}</math> Also: :<math>\begin{align} & \left( E-{{m}_{0}}{{c}^{2}}-V \right)F+\hbar c\frac{dG}{dr}+\frac{c\hbar q}{r}G=0 \\ & \left( E+{{m}_{0}}{{c}^{2}}-V \right)G-\hbar c\frac{dF}{dr}+\frac{c\hbar q}{r}F=0 \\ & V=-\frac{{{e}^{2}}}{4\pi {{\varepsilon }_{0}}}\frac{1}{r} \\ \end{align}</math> ====Skalentransformation:==== :<math>\begin{align} & {{a}_{1}}=\frac{{{m}_{0}}{{c}^{2}}+E}{\hbar c} \\ & {{a}_{2}}=\frac{{{m}_{0}}{{c}^{2}}-E}{\hbar c} \\ & a=\sqrt{{{a}_{1}}{{a}_{2}}}=\frac{\sqrt{{{m}_{0}}^{2}{{c}^{4}}-{{E}^{2}}}}{\hbar c} \\ \end{align}</math> Führt man des weiteren ein: :<math>\begin{align} & \rho :=ar \\ & \gamma :=\frac{{{e}^{2}}}{4\pi {{\varepsilon }_{0}}\hbar c}\approx \frac{1}{137} \\ \end{align}</math> Also einen skalierten Radius und die Feinstrukturkonstante, wodurch sich auch das Potenzial vereinfacht zu: :<math>\frac{V}{\hbar ca}=-\frac{\gamma }{\rho }</math> : :<math>\begin{align} & \left( \frac{d}{d\rho }+\frac{q}{\rho } \right)G-\left( \frac{{{a}_{2}}}{a}-\frac{\gamma }{\rho } \right)F=0 \\ & \left( \frac{d}{d\rho }-\frac{q}{\rho } \right)F-\left( \frac{{{a}_{1}}}{a}+\frac{\gamma }{\rho } \right)G=0 \\ \end{align}</math> <u>'''Randbedingung:'''</u> :<math>F(\rho ),G(\rho )</math> regulär bei <math>\rho \to 0</math> :<math>F(\rho ),G(\rho )\to 0</math> für <math>\rho \to \infty </math> <u>'''Betrachte '''</u><math>\begin{align} & \left| E \right|<{{m}_{0}}{{c}^{2}}\Rightarrow {{a}_{1}},{{a}_{2}}>0 \\ & a\in R \\ \end{align}</math> also gebundene Zustände '''Asymptotisches Verhalten:''' :<math>\begin{align} & \rho \to \infty \\ & \Rightarrow G\acute{\ }=\frac{{{a}_{2}}}{a}F\quad F\acute{\ }=\frac{{{a}_{1}}}{a}G \\ & \Rightarrow G\acute{\ }\acute{\ }=G,\quad F\acute{\ }\acute{\ }=F \\ & \Rightarrow G={{e}^{-\rho }}=F=G={{e}^{-\rho }} \\ \end{align}</math> Weil <math>{{e}^{+\rho }}</math> divergiert! :<math>\begin{align} & \rho \to 0 \\ & \Rightarrow G\acute{\ }+\frac{q}{\rho }G+\frac{\gamma }{\rho }F=0 \\ & F\acute{\ }-\frac{q}{\rho }F-\frac{\gamma }{\rho }G=0 \\ \end{align}</math> Ansatz: :<math>\begin{align} & F(\rho )={{f}_{0}}{{\rho }^{\lambda }} \\ & G(\rho )={{g}_{0}}{{\rho }^{\lambda }} \\ & \Rightarrow \left( \lambda +q \right){{g}_{0}}+\gamma {{f}_{0}}=0 \\ & \left( \lambda -q \right){{f}_{0}}-\gamma {{g}_{0}}=0 \\ \end{align}</math> Es existieren nichttriviale Lösungen <math>{{f}_{0}},{{g}_{0}}</math> , falls <math>\left( \lambda +q \right)\left( \lambda -q \right)+{{\gamma }^{2}}={{\lambda }^{2}}-{{q}^{2}}+{{\gamma }^{2}}=0</math> Also <math>\lambda =\pm \sqrt{{{q}^{2}}-{{\gamma }^{2}}}>0</math> und regulär bei <math>\rho \to 0</math> Ansatz: :<math>\begin{align} & F(\rho )={{\rho }^{\lambda }}{{e}^{-\rho }}f\left( \rho \right) \\ & G(\rho )={{\rho }^{\lambda }}{{e}^{-\rho }}g\left( \rho \right) \\ & \Rightarrow g\acute{\ }-g+\frac{\lambda +q}{\rho }g-\left( \frac{{{a}_{2}}}{a}-\frac{\gamma }{\rho } \right)f=0 \\ & f\acute{\ }-f+\frac{\lambda -q}{\rho }f-\left( \frac{{{a}_{1}}}{a}+\frac{\gamma }{\rho } \right)g=0 \\ \end{align}</math> Die Lösung erfolgt über einen Potenzreihenansatz: :<math>\begin{align} & f(\rho )=\sum\limits_{k=0}^{\infty }{{{f}_{k}}{{\rho }^{k}}}\Rightarrow f\acute{\ }(\rho )=\sum\limits_{k=1}^{\infty }{k{{f}_{k}}{{\rho }^{k-1}}}=\sum\limits_{k=0}^{\infty }{(k+1){{f}_{k+1}}{{\rho }^{k}}} \\ & g(\rho )=\sum\limits_{k=0}^{\infty }{{{g}_{k}}{{\rho }^{k}}}\Rightarrow g\acute{\ }(\rho )=\sum\limits_{k=1}^{\infty }{k{{g}_{k}}{{\rho }^{k-1}}} \\ & \frac{f(\rho )}{\rho }=\sum\limits_{k=0}^{\infty }{{{f}_{k}}{{\rho }^{k-1}}=}\frac{{{f}_{0}}}{\rho }+\sum\limits_{k=0}^{\infty }{{{f}_{k+1}}{{\rho }^{k}}} \\ \end{align}</math> usw... wird dies ebenfalls für <math>g\acute{\ }(\rho ),\frac{g(\rho )}{\rho }</math> aufgestellt Koeffizientenvergleich liefert: :<math>\begin{align} & O\left( \frac{1}{\rho } \right):\left( \lambda +q \right){{g}_{0}}+\gamma {{f}_{0}}=0\quad \quad \left( \lambda -q \right){{f}_{0}}-\gamma {{g}_{0}}=0 \\ & \Rightarrow {{f}_{0}},{{g}_{0}} \\ \end{align}</math> bis auf Normfaktor :<math>\begin{align} & O\left( {{\rho }^{k}} \right):\left( \lambda +q+k+1 \right){{g}_{k+1}}-{{g}_{k}}+\gamma {{f}_{k+1}}-\frac{{{a}_{2}}}{a}{{f}_{k}}=0 \\ & \left( \lambda -q+k+1 \right){{f}_{k+1}}-{{f}_{k}}+\gamma {{g}_{k+1}}-\frac{{{a}_{1}}}{a}{{g}_{k}}=0 \\ \end{align}</math> k=0,1,2,.... Rekursionsformel!! :<math>\begin{align} & a\left[ \left( \lambda +q+k+1 \right){{g}_{k+1}}-{{g}_{k}}+\gamma {{f}_{k+1}}-\frac{{{a}_{2}}}{a}{{f}_{k}} \right]-{{a}_{2}}\left[ \left( \lambda -q+k+1 \right){{f}_{k+1}}-{{f}_{k}}+\gamma {{g}_{k+1}}-\frac{{{a}_{1}}}{a}{{g}_{k}} \right]=0 \\ & \Rightarrow \left[ a\left( \lambda +q+k+1 \right)+{{a}_{2}}\gamma \right]{{g}_{k+1}}=\left[ {{a}_{2}}\left( \lambda -q+k+1 \right)-a\gamma \right]{{f}_{k+1}} \\ \end{align}</math> '''Verhalten für große k:''' :<math>ak{{g}_{k+1}}\approx {{a}_{2}}k{{f}_{k+1}}\Rightarrow {{f}_{k}}\approx \frac{a}{{{a}_{2}}}{{g}_{k}}</math> Dies kann man einsetzen in :<math>\left( \lambda +q+k+1 \right){{g}_{k+1}}-{{g}_{k}}+\gamma {{f}_{k+1}}-\frac{{{a}_{2}}}{a}{{f}_{k}}=0</math> und es folgt: :<math>\begin{align} & \left( k+1 \right){{g}_{k+1}}\approx 2{{g}_{k}} \\ & \Rightarrow \frac{{{g}_{k+1}}}{{{g}_{k}}}\approx \frac{2}{k+1}\Rightarrow {{g}_{k+1}}\approx \frac{{{2}^{k+1}}}{\left( k+1 \right)!}{{g}_{0}} \\ & \Rightarrow g(\rho )\tilde{\ }{{e}^{2\rho }} \\ & \Rightarrow f(\rho )\tilde{\ }{{e}^{2\rho }} \\ \end{align}</math> Falls die Potenzreihen :<math>f(\rho )=\sum\limits_{k=0}^{\infty }{{{f}_{k}}{{\rho }^{k}}},g(\rho )=\sum\limits_{k=0}^{\infty }{{{g}_{k}}{{\rho }^{k}}}</math> nicht abbrechen, so divergiert <math>\begin{align} & F(\rho )={{\rho }^{\lambda }}{{e}^{-\rho }}f\left( \rho \right) \\ & G(\rho )={{\rho }^{\lambda }}{{e}^{-\rho }}g\left( \rho \right) \\ \end{align}</math> exponentiell für <math>\rho \to \infty \Rightarrow F(\rho ),G(\rho )\tilde{\ }{{e}^{\rho }}</math> Dies ist jedoch ein Widerspruch zu den gesetzten Randbedingungen! Also muss es einen Abbruch bei <math>k=n\acute{\ }\in N</math> geben: :<math>{{f}_{n\acute{\ }+1}}={{g}_{n\acute{\ }+1}}=0</math> Setzt man dies in die Rekursionsformel ein, so folgt: :<math>\begin{align} & -{{g}_{n\acute{\ }}}-\frac{{{a}_{2}}}{a}{{f}_{n\acute{\ }}}=0\Rightarrow {{a}_{2}}{{f}_{n\acute{\ }}}=-a{{g}_{n\acute{\ }}} \\ & -{{f}_{n\acute{\ }}}-\frac{{{a}_{1}}}{a}{{g}_{n\acute{\ }}}=0\Rightarrow a{{f}_{n\acute{\ }}}=-{{a}_{1}}{{g}_{n\acute{\ }}} \\ \end{align}</math> Diese beiden Gleichungen stimmen jedoch für alle f,g überein, da :<math>\frac{{{a}_{2}}}{a}=\frac{a}{{{a}_{1}}}</math> Setzt man <math>{{a}_{2}}{{f}_{n\acute{\ }}}=-a{{g}_{n\acute{\ }}}</math> in <math>\left[ a\left( \lambda +q+k+1 \right)+{{a}_{2}}\gamma \right]{{g}_{k+1}}=\left[ {{a}_{2}}\left( \lambda -q+k+1 \right)-a\gamma \right]{{f}_{k+1}}</math> ein, so folgt mit <math>k+1=n\acute{\ }</math> : :<math>\begin{align} & \frac{a\left( \lambda +q+n\acute{\ } \right)+{{a}_{2}}\gamma }{a}=-\frac{\left[ {{a}_{2}}\left( \lambda -q+n\acute{\ } \right)-a\gamma \right]}{{{a}_{2}}} \\ & \lambda +q+n\acute{\ }+\frac{{{a}_{2}}}{a}\gamma +\lambda -q+n\acute{\ }+\frac{a}{{{a}_{2}}}\gamma =0 \\ & 2a\left( \lambda +n\acute{\ } \right)=\left( \frac{{{a}^{2}}}{{{a}_{2}}}-{{a}_{2}} \right)\gamma =\frac{2E}{\hbar c}\gamma \\ & \frac{{{a}^{2}}}{{{a}_{2}}}={{a}_{1}} \\ & {{a}^{2}}{{\left( \lambda +n\acute{\ } \right)}^{2}}=\frac{{{E}^{2}}}{{{\hbar }^{2}}{{c}^{2}}}{{\gamma }^{2}} \\ \end{align}</math> Weiter gilt: :<math>\begin{align} & {{a}^{2}}=\frac{{{m}_{0}}^{2}{{c}^{4}}-{{E}^{2}}}{{{\hbar }^{2}}{{c}^{2}}} \\ & \Rightarrow \left( {{m}_{0}}^{2}{{c}^{4}}-{{E}^{2}} \right){{\left( \lambda +n\acute{\ } \right)}^{2}}={{E}^{2}}{{\gamma }^{2}} \\ \end{align}</math> Löst man dies nach den exakten Energieeigenwerten, die sich damit ergeben, also nach E auf, so erhält man die Feinstrukturformel: :<math>E=\frac{{{m}_{0}}{{c}^{2}}}{\sqrt{1+{{\left( \frac{\gamma }{\lambda +n\acute{\ }} \right)}^{2}}}}</math> Mit der Feinstrukturkonstanten :<math>\gamma \approx \frac{1}{137}</math> :<math>\begin{align} & \lambda =\sqrt{q} \\ & {{a}^{2}}=\frac{{{m}_{0}}^{2}{{c}^{4}}-{{E}^{2}}}{{{\hbar }^{2}}{{c}^{2}}} \\ & \Rightarrow \left( {{m}_{0}}^{2}{{c}^{4}}-{{E}^{2}} \right){{\left( \lambda +n\acute{\ } \right)}^{2}}={{E}^{2}}{{\gamma }^{2}} \\ \end{align}</math> :<math>\begin{align} & \lambda =\sqrt{{{q}^{2}}-{{\gamma }^{2}}}=\sqrt{{{\left( j+\frac{1}{2} \right)}^{2}}-{{\gamma }^{2}}} \\ & j=\frac{1}{2},\frac{3}{2},...,n\acute{\ }\in {{N}_{0}} \\ & j=l\pm s \\ \end{align}</math> entwickelt man die Energieeigenwerte nach der Feinstrukturkonstanten bis <math>O\left( {{\gamma }^{4}} \right)</math> , so folgt: :<math>E={{m}_{0}}{{c}^{2}}\left[ 1-\frac{1}{2}{{\left( \frac{\gamma }{\lambda +n\acute{\ }} \right)}^{2}}+\frac{3}{8}{{\left( \frac{\gamma }{\lambda +n\acute{\ }} \right)}^{4}}+O\left( {{\gamma }^{6}} \right) \right]</math> mit :<math>\lambda \left( \gamma \right)=|q|\sqrt{1-{{\left( \frac{\gamma }{q} \right)}^{2}}}=|q|\left[ 1-\frac{1}{2}{{\left( \frac{\gamma }{q} \right)}^{2}} \right]+O\left( {{\gamma }^{4}} \right)</math> :<math>\begin{align} & {{\left( \frac{1}{\lambda +n\acute{\ }} \right)}^{2}}=\frac{1}{{{\left[ n\acute{\ }+|q|-\frac{1}{2}\left( \frac{{{\gamma }^{2}}}{\left| q \right|} \right) \right]}^{2}}}+O\left( {{\gamma }^{4}} \right) \\ & n=n\acute{\ }+\left| q \right| \\ & n\acute{\ }=0,1,2,... \\ & \left| q \right|=j+\frac{1}{2}=1,2,.... \\ & {{\left( \frac{1}{\lambda +n\acute{\ }} \right)}^{2}}=\frac{1}{{{n}^{2}}}{{\left[ 1-\frac{1}{2}\left( \frac{{{\gamma }^{2}}}{\left| q \right|n} \right) \right]}^{-2}}+O\left( {{\gamma }^{4}} \right)=\frac{1}{{{n}^{2}}}\left[ 1+\left( \frac{{{\gamma }^{2}}}{\left| q \right|n} \right) \right]+O\left( {{\gamma }^{4}} \right)=\frac{1}{{{n}^{2}}}+\left( \frac{{{\gamma }^{2}}}{\left| q \right|{{n}^{3}}} \right)+O\left( {{\gamma }^{4}} \right) \\ & \left| q \right|=j+\frac{1}{2}=l\pm s+\frac{1}{2} \\ \end{align}</math> Setzt man dies in die exakten Energieeigenwerte E ein, so folgt: :<math>\begin{align} & E={{m}_{0}}{{c}^{2}}\left[ 1-\left( \frac{{{\gamma }^{2}}}{2{{n}^{2}}} \right)-\left( \frac{{{\gamma }^{4}}}{2{{n}^{3}}} \right)\left( \frac{1}{j+\frac{1}{2}}-\frac{3}{4n} \right)+O\left( {{\gamma }^{6}} \right) \right] \\ & n=1,2,3 \\ & j=\frac{1}{2},\frac{3}{2},...,n-\frac{1}{2},wegen\ n=n\acute{\ }+j+\frac{1}{2} \\ & j=l\pm s \\ \end{align}</math> <u>'''Diskussion'''</u> :<math>O\left( {{\gamma }^{0}} \right):E={{m}_{0}}{{c}^{2}}</math> Ruheenergie :<math>O\left( {{\gamma }^{2}} \right):\Delta {{E}^{(2)}}=-{{m}_{0}}{{c}^{2}}\left( \frac{{{\gamma }^{2}}}{2{{n}^{2}}} \right)=-\frac{{{R}_{H}}}{{{n}^{2}}}</math> nicht relativistisches, entartetes Energiespektrum :<math>O\left( {{\gamma }^{4}} \right):\Delta {{E}^{(4)}}=-{{m}_{0}}{{c}^{2}}\left( \frac{{{\gamma }^{4}}}{2{{n}^{3}}} \right)\left( \frac{1}{j+\frac{1}{2}}-\frac{3}{4n} \right)</math> Feinstruktur- Aufspaltung. Eine Aufhebung der j-Entartung durch Spin- Bahn- Kopplung. Dabei bleibt die Freiheit der Ausrichtung der Achse des magnetischen Moments, also die <math>2(2j+1)</math> - fache <math>{{m}_{j}}</math> - Entartung+ Parität! ====Spektroskopische Beziehung der Feinstrukturterme: <math>n{{l}_{j}}</math>==== :<math>n=1:\quad j=\frac{1}{2}:\ 1{{s}_{\frac{1}{2}}}</math> :<math>\begin{array}{*{35}{l}} {} & n=2:\quad j=\frac{1}{2}:\ 2{{s}_{\frac{1}{2}}}\quad 2{{p}_{\frac{1}{2}}}\quad \quad \quad \quad \quad \quad \quad n\overset{\acute{\ }}{\mathop{\ }}\,=1 \\ {} & \quad \quad \quad \,j=\frac{3}{2}:\quad \quad \quad 2{{p}_{\frac{3}{2}}}\quad \quad \quad \quad \quad \quad \quad n\overset{\acute{\ }}{\mathop{\ }}\,=0 \\ \end{array}</math> n´=0. .
Summary:
Please note that all contributions to testwiki are considered to be released under the Creative Commons Attribution (see
Testwiki:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Templates used on this page:
Template:ScriptProf
(
edit
)
Template:Scripthinweis
(
edit
)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
Edit source
View history
More
Search
Navigation
Main page
Recent changes
Random page
Physikerwelt
Tools
What links here
Related changes
Special pages
Page information
In other projects