Editing Übersicht:Thermodynamik

Jump to navigation Jump to search
Warning: You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to your username, along with other benefits.

The edit can be undone. Please check the comparison below to verify that this is what you want to do, and then publish the changes below to finish undoing the edit.

Latest revision Your text
Line 1: Line 1:
==klassische Mechanik==
==klassische Mechanik==
* Prinzip der Vorurteilsfreien Schätzung in der klassischen Mechanik
* Prinzip der Vorurteilsfreien Schätzung in der klassischen Mechanik
gleiche a –priori Wahrscheinlichkeiten
--> gleiche a –priori Wahrscheinlichkeiten
* Hamiltonfunktion mit Hamiltongleichungen
* Hamiltonfunktion mit Hamiltongleichungen
* Lösungen Trajektorien im Phasenraum
* Lösungen Trajektorien im Phasenraum
==Satz von Liouville==
==Satz von Liouville==
Das Phasenraumvolumen ist invariant unter Zeitentwicklung
Das Phasenraumvolumen ist invariant unter Zeitentwicklung
gleiche Phasenvolumina ^= gleiche a-priori Wahrscheinlichkeit bleibt bestehen
--> gleiche Phasenvolumina ^= gleiche a-priori Wahrscheinlichkeit bleibt bestehen
Informationsmaß über Microzustand kann mit der zeit nicht zunehmen <math>I(t_1)\ge I(t_2)</math> mit <math>t_1 < t_2</math>
--> Informationsmaß über Microzustand kann mit der zeit nicht zunehmen <math>I(t_1)\ge I(t_2)</math> mit <math>t_1 < t_2</math>
==Zustand==
==Zustand==
:<math>\left\langle {{M}^{\nu }} \right\rangle =\int{d\xi \rho \left( \xi  \right){{M}^{\nu }}\left( \xi  \right)}</math>
<math>\left\langle {{M}^{\nu }} \right\rangle =\int{d\xi \rho \left( \xi  \right){{M}^{\nu }}\left( \xi  \right)}</math>
(thermodynamischer Zustand durch Mittelwerte der Phasenraumfunktionen
(thermodynamischer Zustand durch Mittelwerte der Phasenraumfunktionen
:<math>\rho \left( \xi  \right)=\exp \left( \psi -{{\lambda }_{\nu }}{{M}^{\nu }}\left( \xi  \right) \right)={{z}^{-1}}\exp \left( -{{\lambda }_{\nu }}{{M}^{\nu }}\left( \xi  \right) \right)</math> mit <math>z={{\operatorname{e}}^{-\psi }}=\int{{{e}^{-{{\lambda }_{\nu }}{{M}^{\nu }}\left( \xi  \right)}}d\xi }</math>
<math>\rho \left( \xi  \right)=\exp \left( \psi -{{\lambda }_{\nu }}{{M}^{\nu }}\left( \xi  \right) \right)={{z}^{-1}}\exp \left( -{{\lambda }_{\nu }}{{M}^{\nu }}\left( \xi  \right) \right)</math>
mit
<math>z={{\operatorname{e}}^{-\psi }}=\int{{{e}^{-{{\lambda }_{\nu }}{{M}^{\nu }}\left( \xi  \right)}}d\xi }</math>
==Shannon-Information==
==Shannon-Information==
*<math>I\left( P \right)=\sum\limits_{i}{{{P}_{i}}\ln {{P}_{i}}} \le 0</math>
<math>I\left( P \right)=\sum\limits_{i}{{{P}_{i}}\ln {{P}_{i}}} \le 0</math>
*Information: Welches Ereignis tritt ein?
Information: Welches Ereignis tritt ein?
*Wie viel weiß ich von meinem System?
Wie viel weiß ich von meinem System
*'''Maximum'''<math>I\left( P \right)=0</math> schafte Verteilung<math>{{P}_{i}}={{\delta }_{ij}}</math>
Maximum<math>I\left( P \right)=0</math> --> schafte Verteilung<math>{{P}_{i}}={{\delta }_{ij}}</math>
===minimum===
*Maximum des Nichtwissens entspricht '''minimaler''' Shannon-Information -- ><math>I\left( P \right)<0</math> Variation der <math>P_i</math> um<math>\delta {{P}_{i}}</math>
 
mit 1 Nebendbedingung <math>\sum\limits_{i}{{{P}_{i}}}=1</math> führt unter Verwendung  eines Lagrange-Parameters<math>\lambda</math> zu
 
:<math>I\left( P \right)=\sum{{{P}_{i}}\ln {{P}_{i}}+\lambda \left( {{P}_{i}}-1 \right)}</math>
 
die Variation, also <math>\delta I\left( P \right)=\sum{\left( \ln {{P}_{i}}+1 \right)\delta {{P}_{i}}}</math>
 
lässt keine freien Parameter zu also erhält man N Gleichungen
 
:<math>\left( \ln {{P}_{i}} \right)=- \left( \lambda +1 \right)=\text{const.}</math>
 
so erhält man wegen der Normierung (<math>\sum\limits_{i}{{{P}_{i}}}=1</math>) die
 
Gleichverteilung<math>{{P}_{i}}=\frac{1}{N}</math>
==Nebenbedingungen==
* führt zum Informationstheoretischen Prinzip nach Jaynes
* Wahrscheinlichkeitsverteilung die die minimale Information enthält bei Erfüllung aller bekannten Nebenbedingungen
* Variationsverfahren mit Nebenbedingungen
* Shannon-Information <math>I\left( P \right)=\sum\limits_{i}{{{P}_{i}}\ln {{P}_{i}}}\le 0</math> soll minimal werden
* Es gibt m+1 Nebenbedingungen:
** Gesamtwahrscheinlichkeiten sind 1: <math>\sum\limits_{i=1}^{N}{{{P}_{i}}}=1</math>
** Kenntnis von <math>\nu</math> Mittelwerten makroskopischer Observabelen  <math>\left\langle {{M}^{\nu }} \right\rangle
  =\sum\limits_{i=1}^{N}{{{P}_{i}}M_{i}^{\nu }}</math>
** also mit Lagrange Multiplikatoren:  <math>I\left( P \right)
        =\sum {{P}_{i}}\ln {{P}_{i}}+\lambda \left( {{P}_{i}}-1 \right)+{{\lambda }_{\nu }}M_{i}^{\nu }{{P}_{i}}</math>
* führt zur Variation  <math>\delta I\left( P \right)
  =\left( \sum \ln {{P}_{i}}+\underbrace{1+\lambda }_{:=-\psi }+{{\lambda }_{\nu }}M_{i}^{\nu } \right)\delta {{P}_{i}}=0</math>
* daraus erhält man die [[verallgemeinerte kanonische Verteilung]] <math>{{P}_{i}}
  =\exp \left( \psi -{{\lambda }_{\nu }}M_{i}^{\nu } \right)</math>
* die m+1 Lagrange-Multiplikatoren sind also eindeutig bestimmt
* <math>\psi =\psi \left( {{\lambda }_{\nu }} \right)=-\ln \sum{\exp \left( -{{\lambda }_{\mu }}M_{i}^{\mu } \right)}</math>, da <math>\begin{align}
  & 1=\sum{{{P}_{i}}}=\sum{\exp \left( \psi -{{\lambda }_{\nu }}M_{i}^{\nu } \right)={{e}^{\psi }}{{e}^{{{\lambda }_{\nu }}}}\sum{{{e}^{M_{i}^{\nu }}}}} \\
& \Rightarrow {{e}^{-\psi }}={{e}^{{{\lambda }_{\nu }}}}\sum{{{e}^{M_{i}^{\nu }}}} \\
\end{align}</math>
 
==Fundamentalbeziehung==
*durch eine Legenderetransformation <math>I\left( P \right)\to I\left( \lambda  \right)</math>
:<math>I\left( P \right)=\sum\limits_{i}{{{P}_{i}}\ln {{P}_{i}}}=\sum\limits_{i}{{{P}_{i}}\ln \exp \left( \psi -{{\lambda }_{\nu }}M_{i}^{\nu } \right)}=\psi \underbrace{\sum\limits_{i}{{{P}_{i}}}}_{1}-{{\lambda }_{\nu }}\sum\limits_{i}{{{P}_{i}}M_{i}^{\nu }}=\psi -{{\lambda }_{\nu }}\left\langle {{M}^{\nu }} \right\rangle </math>
* extensive Parameter <math>\left\langle {{M}^{\nu }} \right\rangle
  ={{\partial }_{{{\lambda }_{\nu }}}}\psi \left( {{\lambda }_{\nu }} \right)
  ={{\partial }_{{{\lambda }_{\nu }}}}\left( -\ln \sum{\exp \left( -{{\lambda }_{\mu }}M_{i}^{\mu } \right)} \right)</math>
* intensive Parameter <math>{{\lambda }_{\nu }}=-{{\partial }_{\left\langle {{M}^{\nu }} \right\rangle }}I</math>
:<math>\to dI=-{{\lambda }_{\nu }}d\left\langle {{M}^{\nu }} \right\rangle </math>
==Beziehungen==
*<math>I\left( P \right)=\sum\limits_{i}{{{P}_{i}}\ln {{P}_{i}}}=Tr\left( \hat{\rho }\ln \hat{\rho } \right)</math>
* Verknüpfung mit phänomenologischer Statistik
** Entropie = fehlende Kenntnis
** <math>S\left( \left\langle {{M}^{\nu }} \right\rangle  \right)=-{{k}_{B}}I\left( \left\langle {{M}^{\nu }} \right\rangle  \right)</math>
** da Shannoninformation (I) nach letzer Messung nicht zunehmen kann, → kann Entropie (S) nicht abnehmen
** <math>S=-kI=-k\operatorname{Tr}\left( \hat{\rho }\ln \left( {\hat{\rho }} \right) \right)=-k\left( \psi -{{\lambda }_{\nu }}{{M}^{\nu }} \right)=k\left( {{\lambda }_{\nu }}{{M}^{\nu }}-\psi \left( \left\{ {{\lambda }_{\mu }} \right\} \right) \right)</math>
** <math>k{{\lambda }_{\nu }}={{\partial }_{\left\langle {{M}^{\nu }} \right\rangle }}S</math> pähnomenologische Definition der intensiven Variabelen
* Gibbssche Fundamentalgleichung <math>dS=k{{\lambda }_{\nu }}d\left\langle {{M}^{\nu }} \right\rangle =k\left( \beta dU+\frac{\beta }{p}dV-\frac{S}{\mu }dN \right)</math>
==Kullback-Information==
* Informationsgewinn <math>K\left( P,P' \right)=\sum{{{P}_{i}}\ln \frac{{{P}_{i}}}{{{P}_{i}}'}} \ge 0</math>
* Minium Variation mit NB:
** <math>1=\sum{{{P}_{i}}}</math>
** <math>{{P}_{i}}={{P}_{i}}'\Rightarrow K=0</math> (kein Gewinn)
* Informationsgewinn ^= Änderung der Shannon Information
* Mit Dichtematrix <math>K\left( \rho ,{{\rho }^{0}} \right)=\operatorname{Tr}\left( \hat{\rho }\ln \frac{{\hat{\rho }}}{{{{\hat{\rho }}}^{0}}} \right)=\operatorname{Tr}\left( \hat{\rho }\left( \ln \hat{\rho }-\ln {{{\hat{\rho }}}^{0}} \right) \right)=I\left( {\hat{\rho }} \right)-I\left( {{{\hat{\rho }}}^{0}} \right)-\operatorname{Tr}\left( \hat{\rho }-{{{\hat{\rho }}}^{0}} \right)\ln \left( {{{\hat{\rho }}}^{0}} \right)</math>
* Für Druckensemble <math>{{{\hat{\rho }}}^{0}}=\exp \left( {{\psi }^{0}}-{{\beta }^{0}}\left( H+{{p}^{0}}V \right) \right)</math> und <math>\rho</math> nicht im Gleichgewichtszustand folgt <math>K\left( \rho ,{{\rho }^{0}} \right)=\frac{S-{{S}^{0}}}{{{T}^{0}}}+\frac{U-{{U}^{0}}+{{p}^{0}}\left( V-{{V}^{0}} \right)}{k{{T}^{0}}}</math>
* mit Energie <math>\Lambda</math> <math>K\left( \rho ,{{\rho }^{0}} \right)=\frac{\Lambda }{k{{T}^{0}}}</math>
* der Informationsgewinn kann nur abnehmen <math>{{d}_{t}}K\left( \rho ,{{\rho }^{0}} \right)=\frac{{{d}_{t}}\Lambda }{k{{T}^{0}}}</math> mit <math>\nu =-\frac{1}{T}{{d}_{t}}\Lambda </math>
* → die Entropieproduktion ist ststs <math>\ge 0</math>
==Situation in der QM==
* Microzustände <math>\left| \psi  \right\rangle \in \mathcal{H}</math>
* Microobservablen (durch Maximalmessung (Satz von vertauschbaren Observabelen)) Operator <math>{\hat{\mathcal{M}}}</math>
* Messert Eigenwert zum Eingenzustand <math>{{{\hat{M}}}_{\alpha }}\left| \psi  \right\rangle ={{m}_{\alpha }}\left| \psi  \right\rangle </math>
* Erwartungwert
** für reine Zustände <math>\left\langle {{{\hat{M}}}_{\alpha }} \right\rangle =\left\langle \psi \left| {{M}_{\alpha }} \right|\psi  \right\rangle =\operatorname{Tr}\left( \hat{\rho }\hat{M} \right)</math> mit <math>\hat{\rho }=\left| \psi  \right\rangle \left\langle  \psi  \right|</math>
** für gemischte Zustände <math>\left\langle {{{\hat{M}}}_{\alpha }} \right\rangle =\sum{{{P}_{i}}\left\langle \psi \left| {{M}_{\alpha }} \right|\psi  \right\rangle }=\operatorname{Tr}\left( \hat{\rho }{{{\hat{M}}}_{\alpha }} \right)</math> mit <math>\hat{\rho }=\sum{{{P}_{i}}\left| \psi  \right\rangle \left\langle  \psi  \right|}</math>
*vorurteilsfreie Schätzung <math>\left| \alpha  \right\rangle </math> durch Maximalmessung
*<math>\operatorname{Tr}\hat{\rho }=1</math>
*<math>\operatorname{Tr}\left( \hat{\rho }{{{\hat{M}}}^{\nu }} \right)=\left\langle {{M}^{\nu }} \right\rangle </math>
*<math>\Rightarrow \hat{\rho }=\exp \left( \psi -{{\lambda }_{\nu }}{{M}^{\nu }} \right)</math>
==Phänomenologische Thermodynamik==
===1. Hauptsatz===
*Energieerhaltungssatz
*<math>dU=\delta Q+\delta Q=TdS-pdV</math>
* vgl Gibsche Fundamentalrelation
===2. Hauptsatz===
* Wärme kann nicht vollständig in Arbeit umgewandelt werden
*<math>\delta S\ge \frac{\delta Q}{T}</math>


[[Kategorie:Thermodynamik]]
[[Kategorie:Thermodynamik]]
Please note that all contributions to testwiki are considered to be released under the Creative Commons Attribution (see Testwiki:Copyrights for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource. Do not submit copyrighted work without permission!
Cancel Editing help (opens in new window)