Editing
Stark Effekt im H- Atom
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
=== Matrixelemente des elektrischen Dipolmoments === :<math>\hat{\bar{d}}=e{{\hat{x}}_{3}}</math> mit <math>\left\langle n\acute{\ }l\acute{\ }m\acute{\ } \right|{{\hat{x}}_{3}}\left| nlm \right\rangle \tilde{\ }{{\delta }_{l\acute{\ },l\pm 1}}{{\delta }_{mm\acute{\ }}}</math> Vergleiche Seite 121: n=n´=2 l=0, m=0 l=1, m=1 l=1, m=0 l = 1, m=-1 <math>\alpha </math> l´=0, m´=0 0 0 <math>{{d}_{13}}</math> 0 1 l´=1, m´=1 0 0 0 0 2 l´=1, m´=0 <math>{{d}_{13}}^{*}</math> 0 0 0 3 l´=1, m´=-1 0 0 0 0 4 Der Störoperator: :<math>{{\hat{H}}^{(1)}}=-\left| {\bar{E}} \right|\hat{d}</math> Wir haben also mit <math>{{d}_{13}}</math> das einzige nichtverschwindende Matrixelement: :<math>\begin{align} & {{d}_{13}}=\left\langle 200 \right|e{{{\hat{x}}}_{3}}\left| 210 \right\rangle \\ & {{{\hat{x}}}_{3}}=r\cos \vartheta \\ \end{align}</math> :<math>\begin{align} & {{d}_{13}}=\left\langle 200 \right|e{{{\hat{x}}}_{3}}\left| 210 \right\rangle \\ & =e\int_{0}^{\infty }{{}}{{d}^{3}}r{{r}^{2}}\frac{2}{{{\left( 2{{a}_{0}} \right)}^{\frac{3}{2}}}}\left( 1-\frac{r}{2{{a}_{0}}} \right){{e}^{-\frac{r}{2{{a}_{0}}}}}r\frac{1}{\sqrt{3}{{\left( 2{{a}_{0}} \right)}^{\frac{3}{2}}}{{a}_{0}}}r{{e}^{-\frac{r}{2{{a}_{0}}}}}\int_{0}^{2\pi }{d\phi \int_{0}^{\pi }{d\vartheta \sin \vartheta \sqrt{\frac{1}{4\pi }}\cos \vartheta \sqrt{\frac{3}{4\pi }}\cos \vartheta }} \\ & \frac{{{u}_{20}}(r)}{r}=\frac{2}{{{\left( 2{{a}_{0}} \right)}^{\frac{3}{2}}}}\left( 1-\frac{r}{2{{a}_{0}}} \right){{e}^{-\frac{r}{2{{a}_{0}}}}} \\ & \frac{{{u}_{21}}(r)}{r}=\frac{1}{\sqrt{3}{{\left( 2{{a}_{0}} \right)}^{\frac{3}{2}}}{{a}_{0}}}r{{e}^{-\frac{r}{2{{a}_{0}}}}} \\ & \sqrt{\frac{1}{4\pi }}={{Y}_{0}}^{0} \\ & \sqrt{\frac{3}{4\pi }}\cos \vartheta ={{Y}_{1}}^{0} \\ & \int_{0}^{2\pi }{d\phi \int_{0}^{\pi }{d\vartheta \sin \vartheta \sqrt{\frac{1}{4\pi }}\cos \vartheta \sqrt{\frac{3}{4\pi }}\cos \vartheta }}=\frac{1}{\sqrt{3}} \\ & \Rightarrow {{d}_{13}}=\left\langle 200 \right|e{{{\hat{x}}}_{3}}\left| 210 \right\rangle =\frac{e}{\sqrt{3}}\int_{0}^{\infty }{{}}{{d}^{3}}r{{r}^{2}}\frac{2}{{{\left( 2{{a}_{0}} \right)}^{\frac{3}{2}}}}\left( 1-\frac{r}{2{{a}_{0}}} \right){{e}^{-\frac{r}{2{{a}_{0}}}}}r\frac{1}{\sqrt{3}{{\left( 2{{a}_{0}} \right)}^{\frac{3}{2}}}{{a}_{0}}}r{{e}^{-\frac{r}{2{{a}_{0}}}}}=-3e{{a}_{0}} \\ \end{align}</math> Somit existiert ein Erwartungswert des Dipolmomentes :<math>{{d}_{13}}=\left\langle 200 \right|e{{\hat{x}}_{3}}\left| 210 \right\rangle =-3e{{a}_{0}}</math> Dies entspricht einem PERMANENTEN Dipolmoment des H- Atoms, welches Konsequenz der l- Entartung ist! Die charakteristische Größenordnung dieses Dipolmoments ist <math>{{a}_{0}}</math> , also die Ausdehnung der Wellenfunktion! =====Störungsrechnung:===== ''' '''Aufspaltung des Energieniveaus n=2 im elektrischen Feld :<math>\bar{E}</math> : Säkulargleichung: <math>\sum\limits_{\alpha =1}^{4}{{}}\left( -\left| {\bar{E}} \right|{{d}_{\alpha \beta }}-E{{\delta }_{\alpha \beta }} \right){{c}_{\alpha }}=0</math> Säkulardeterminante: :<math>\left| \begin{matrix} -E & 0 & -\left| {\bar{E}} \right|{{d}_{13}} & 0 \\ 0 & -E & 0 & 0 \\ -\left| {\bar{E}} \right|{{d}_{13}} & 0 & -E & 0 \\ 0 & 0 & 0 & -E \\ \end{matrix} \right|=0={{E}^{2}}\left[ {{E}^{2}}-{{\left( \left| {\bar{E}} \right|{{d}_{13}} \right)}^{2}} \right]</math> :<math>\Rightarrow E=0</math> als zweifach entartetes Niveau und<math>E=\pm \left| {\bar{E}} \right|{{d}_{13}}=\mp 3e\left| {\bar{E}} \right|{{a}_{0}}</math> Der Stark- Effekt ist also proportional zur eingeschalten Feldstärke. Man spricht deshalb auch vom linearen Stark- Effekt. Daneben gibt es noch den quadratischen Stark- Effekt in allgemeinen kugelsymmetrischen Potenzialen <math>V\ne \frac{1}{r}</math> , also ohne <math>l</math> - Entartung. Also existiert in diesem Fall gar kein permanentes Dipolmoment und Störungsrechnung2. Ordnung wird nötig. Ausgehend vom Niveau <math>{{E}_{2}}^{(0)}</math> (4- fach entartet) erhalten wir das folgende Bild:
Summary:
Please note that all contributions to testwiki are considered to be released under the Creative Commons Attribution (see
Testwiki:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
Edit source
View history
More
Search
Navigation
Main page
Recent changes
Random page
Physikerwelt
Tools
What links here
Related changes
Special pages
Page information
In other projects