Editing
Das ideale Fermigas
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Definition: Fermi- Dirac- Integral der Ordnung s:==== :<math>\begin{align} & {{F}_{s}}\left( \eta \right):=\frac{1}{\Gamma \left( s+1 \right)}\int_{0}^{\infty }{{}}dy\frac{{{y}^{s}}}{\left( {{e}^{y-\eta }}+1 \right)} \\ & s>0 \\ \end{align}</math> <u>'''Entwicklung für'''</u> :<math>\eta >>1\Rightarrow \xi >>1</math>, also Entartung: :<math>\begin{align} & \Gamma \left( s+1 \right){{F}_{s}}\left( \eta \right):=\int_{0}^{\infty }{{}}dy\frac{{{y}^{s}}}{\left( {{e}^{y-\eta }}+1 \right)}=\frac{1}{s+1}\int_{0}^{\infty }{{}}dy\frac{d}{dy}\left( {{y}^{s+1}} \right)\frac{1}{\left( {{e}^{y-\eta }}+1 \right)} \\ & =\frac{1}{s+1}\left. \left[ \left( {{y}^{s+1}} \right)\frac{1}{\left( {{e}^{y-\eta }}+1 \right)} \right] \right|_{0}^{\infty }+\frac{1}{s+1}\int_{0}^{\infty }{{}}dy{{y}^{s+1}}\frac{{{e}^{y-\eta }}}{{{\left( {{e}^{y-\eta }}+1 \right)}^{2}}} \\ & \frac{1}{s+1}\left. \left[ \left( {{y}^{s+1}} \right)\frac{1}{\left( {{e}^{y-\eta }}+1 \right)} \right] \right|_{0}^{\infty }=0 \\ \end{align}</math> weitere Substitution: :<math>\begin{align} & x=y-\eta \\ & \Rightarrow \Gamma \left( s+1 \right){{F}_{s}}\left( \eta \right)=\frac{1}{s+1}\int_{0}^{\infty }{{}}dy{{y}^{s+1}}\frac{{{e}^{y-\eta }}}{{{\left( {{e}^{y-\eta }}+1 \right)}^{2}}}=\frac{1}{s+1}\int_{-\eta }^{\infty }{{}}dx{{\left( x+\eta \right)}^{s+1}}\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}} \\ & \eta >>1 \\ \end{align}</math> Somit kann man die Grenzen erweitern, da <math>\eta >>1</math> : :<math>\begin{align} & x=y-\eta \\ & \Rightarrow \Gamma \left( s+1 \right){{F}_{s}}\left( \eta \right)=\frac{1}{s+1}\int_{-\eta }^{\infty }{{}}dx{{\left( x+\eta \right)}^{s+1}}\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}\approx \frac{1}{s+1}\int_{-\infty }^{\infty }{{}}dx{{\left( x+\eta \right)}^{s+1}}\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}+O\left( {{e}^{-\eta }} \right) \\ & O\left( {{e}^{-\eta }} \right)<<1 \\ \end{align}</math> Dies kann man durch Entwicklung von :<math>{{\left( x+\eta \right)}^{s+1}}</math> lösen: :<math>{{\left( x+\eta \right)}^{s+1}}\approx {{\left( \eta \right)}^{s+1}}+\left( s+1 \right){{\left( \eta \right)}^{s}}x+\frac{s\left( s+1 \right)}{2}{{\left( \eta \right)}^{s-1}}{{x}^{2}}+....</math> Somit: :<math>\begin{align} & \Gamma \left( s+1 \right){{F}_{s}}\left( \eta \right)=\frac{1}{s+1}\int_{-\eta }^{\infty }{{}}dx{{\left( x+\eta \right)}^{s+1}}\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}\approx \frac{1}{s+1}\int_{-\infty }^{\infty }{{}}dx{{\left( x+\eta \right)}^{s+1}}\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}+O\left( {{e}^{-\eta }} \right) \\ & \approx \frac{1}{s+1}\int_{-\infty }^{\infty }{{}}dx{{\left( \eta \right)}^{s+1}}\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}+\int_{-\infty }^{\infty }{{}}dx{{\left( \eta \right)}^{s}}x\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}+\frac{s}{2}\int_{-\infty }^{\infty }{{}}dx{{\left( \eta \right)}^{s-1}}{{x}^{2}}\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}} \\ & =\frac{{{\left( \eta \right)}^{s+1}}}{s+1}\int_{-\infty }^{\infty }{{}}dx\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}+{{\left( \eta \right)}^{s}}\int_{-\infty }^{\infty }{{}}dx\frac{x{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}+\frac{s}{2}{{\left( \eta \right)}^{s-1}}\int_{-\infty }^{\infty }{{}}dx{{x}^{2}}\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}} \\ \end{align}</math> Für die Terme gilt im Einzelnen: :<math>\begin{align} & \int_{-\infty }^{\infty }{{}}dx\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}=\left[ \frac{-1}{\left( {{e}^{x}}+1 \right)} \right]_{-\infty }^{\infty }=1 \\ & \int_{-\infty }^{\infty }{{}}dx\frac{x{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}=0\quad da\ Integrand\ ungerade \\ & \int_{-\infty }^{\infty }{{}}dx{{x}^{2}}\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}:=I \\ \end{align}</math> Bleibt Integral I zu lösen: :<math>\begin{align} & I=\int_{-\infty }^{\infty }{{}}dx{{x}^{2}}\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}=2\int_{0}^{\infty }{{}}dx{{x}^{2}}\frac{{{e}^{x}}}{{{\left( {{e}^{x}}+1 \right)}^{2}}}=-2\left[ {{x}^{2}}\frac{1}{\left( {{e}^{x}}+1 \right)} \right]_{0}^{\infty }+4\int_{0}^{\infty }{{}}dx\frac{x}{\left( {{e}^{x}}+1 \right)} \\ & \left[ {{x}^{2}}\frac{1}{\left( {{e}^{x}}+1 \right)} \right]_{0}^{\infty }=0 \\ & \int_{0}^{\infty }{{}}dx\frac{x}{\left( {{e}^{x}}+1 \right)}=\frac{{{\pi }^{2}}}{12} \\ & \Rightarrow I=\frac{{{\pi }^{2}}}{3} \\ \end{align}</math> Somit ergibt sich das Fermi- Dirac- Integral gemäß :<math>\begin{align} & \Gamma \left( s+1 \right){{F}_{s}}\left( \eta \right)\approx \frac{{{\left( \eta \right)}^{s+1}}}{s+1}+\frac{s}{2}{{\left( \eta \right)}^{s-1}}\frac{{{\pi }^{2}}}{3} \\ & \Gamma \left( s+1 \right){{F}_{s}}\left( \eta \right)=\frac{{{\left( \eta \right)}^{s+1}}}{s+1}+\frac{s}{2}{{\left( \eta \right)}^{s-1}}\frac{{{\pi }^{2}}}{3}+O\left( {{\left( \eta \right)}^{s-3}} \right) \\ & \Rightarrow {{F}_{s}}\left( \eta \right)=\frac{1}{\Gamma \left( s+1 \right)}\left[ \frac{{{\left( \eta \right)}^{s+1}}}{s+1}+\frac{s{{\pi }^{2}}}{6}{{\left( \eta \right)}^{s-1}}+O\left( {{\left( \eta \right)}^{s-3}} \right) \right] \\ \end{align}</math> '''Speziell:''' :<math>\begin{align} & {{F}_{\frac{1}{2}}}\left( \eta \right)\approx \frac{2}{\sqrt{\pi }}\left[ \frac{{{\left( \eta \right)}^{\frac{3}{2}}}}{\frac{3}{2}}+\frac{{{\pi }^{2}}}{12}{{\left( \eta \right)}^{-\frac{1}{2}}} \right] \\ & {{F}_{\frac{3}{2}}}\left( \eta \right)\approx \frac{4}{3\sqrt{\pi }}\left[ \frac{{{\left( \eta \right)}^{\frac{5}{2}}}}{\frac{5}{2}}+\frac{{{\pi }^{2}}}{4}{{\left( \eta \right)}^{\frac{1}{2}}} \right] \\ \end{align}</math> Also: :<math>\begin{align} & \bar{N}=\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2mkT \right)}^{\frac{3}{2}}}\int_{0}^{\infty }{{}}dy\frac{{{y}^{\frac{1}{2}}}}{\left( {{e}^{y-\eta }}+1 \right)}=\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2mkT \right)}^{\frac{3}{2}}}\left[ \frac{2}{3}{{\left( \frac{\mu }{kT} \right)}^{\frac{3}{2}}}+\frac{{{\pi }^{2}}}{12}{{\left( \frac{\mu }{kT} \right)}^{-\frac{1}{2}}} \right] \\ & \Rightarrow \bar{N}=\frac{2}{3}\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m\mu \right)}^{\frac{3}{2}}}\left[ 1+\frac{{{\pi }^{2}}}{8}{{\left( \frac{kT}{\mu } \right)}^{2}} \right] \\ \end{align}</math> <u>Definition: Fermi- Energie:</u> :<math>{{E}_{F}}:=\mu \left( T=0,\bar{N},V \right)</math> Bei T= 0 Kelvin sind die Zustände mit <math>E<{{E}_{F}}</math> voll besetzt, die anderen leer! Wir können dann <math>\mu \left( T=0,\bar{N},V \right)</math> durch <math>{{E}_{F}}</math> und <math>\bar{N}</math> eliminieren: <u>'''T→0'''</u> :<math>\begin{align} & \bar{N}=\frac{2}{3}\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m\mu \right)}^{\frac{3}{2}}}\left[ 1+\frac{{{\pi }^{2}}}{8}{{\left( \frac{kT}{\mu } \right)}^{2}} \right]=\frac{2}{3}\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m{{E}_{F}} \right)}^{\frac{3}{2}}} \\ & \\ \end{align}</math> Für größere Temperaturen T>0 wird nun :<math>\begin{align} & \bar{N}=\frac{2}{3}\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m{{E}_{F}} \right)}^{\frac{3}{2}}} \\ & \\ \end{align}</math> in niedrigster Ordnung in <math>\frac{kT}{{{E}_{F}}}</math> entwickelt und diese Entwicklung dann eingesetzt in die Formel :<math>\begin{align} & \bar{N}=\frac{2}{3}\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m\mu \right)}^{\frac{3}{2}}}\left[ 1+\frac{{{\pi }^{2}}}{8}{{\left( \frac{kT}{\mu } \right)}^{2}} \right]=\frac{2}{3}\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m{{E}_{F}} \right)}^{\frac{3}{2}}} \\ & \Rightarrow {{\left( \mu \right)}^{\frac{3}{2}}}\left[ 1+\frac{{{\pi }^{2}}}{8}{{\left( \frac{kT}{\mu } \right)}^{2}} \right]\approx {{\left( {{E}_{F}} \right)}^{\frac{3}{2}}} \\ & \Rightarrow \mu \approx {{E}_{F}}{{\left[ 1+\frac{{{\pi }^{2}}}{8}{{\left( \frac{kT}{\mu } \right)}^{2}} \right]}^{-\frac{2}{3}}} \\ \end{align}</math> '''Jetzt wird '''in niedrigster Ordnung in <math>\frac{kT}{{{E}_{F}}}</math> entwickelt: Das heißt, für kT=1 zeigt µ über Ef etwa folgenden verlauf: '''die Kurve wird für höhere Temperaturen immer weiter auseinandergedehnt!''' <u>'''Innere Energie'''</u> :<math>\begin{align} & U=\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2mkT \right)}^{\frac{3}{2}}}kT\int_{0}^{\infty }{{}}dy\frac{{{y}^{\frac{3}{2}}}}{\left( {{e}^{y-\eta }}+1 \right)} \\ & {{F}_{\frac{3}{2}}}\left( \eta \right)\approx \frac{4}{3\sqrt{\pi }}\left[ \frac{{{\left( \eta \right)}^{\frac{5}{2}}}}{\frac{5}{2}}+\frac{{{\pi }^{2}}}{4}{{\left( \eta \right)}^{\frac{1}{2}}} \right] \\ \end{align}</math> Also: :<math>\begin{align} & U=\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m \right)}^{\frac{3}{2}}}{{\left( kT \right)}^{\frac{5}{2}}}\left[ \frac{2}{5}{{\left( \frac{\mu }{kT} \right)}^{\frac{5}{2}}}+\frac{{{\pi }^{2}}}{4}{{\left( \frac{\mu }{kT} \right)}^{\frac{1}{2}}} \right] \\ & =\frac{2}{5}\left( \frac{V}{{{h}^{3}}} \right)4\pi \frac{\left( 2s+1 \right)}{2}{{\left( 2m \right)}^{\frac{3}{2}}}{{\left( \mu \right)}^{\frac{5}{2}}}\left[ 1+\frac{5}{2}\frac{{{\pi }^{2}}}{4}{{\left( \frac{kT}{\mu } \right)}^{2}} \right] \\ \end{align}</math> Verwende: So dass: :<math>\begin{align} & U=\frac{2}{5}\left( \frac{V}{{{h}^{3}}} \right)4\pi \frac{\left( 2s+1 \right)}{2}{{\left( 2m \right)}^{\frac{3}{2}}}{{\left( \mu \right)}^{\frac{5}{2}}}\left[ 1+\frac{5}{2}\frac{{{\pi }^{2}}}{4}{{\left( \frac{kT}{\mu } \right)}^{2}} \right] \\ & \approx \frac{2}{5}\left( \frac{V}{{{h}^{3}}} \right)4\pi \frac{\left( 2s+1 \right)}{2}{{\left( 2m \right)}^{\frac{3}{2}}}{{\left( {{E}_{F}} \right)}^{\frac{5}{2}}}{{\left[ 1-\frac{{{\pi }^{2}}}{12}{{\left( \frac{kT}{{{E}_{F}}} \right)}^{2}} \right]}^{\frac{5}{2}}}\left[ 1+\frac{5}{2}\frac{{{\pi }^{2}}}{4}{{\left( \frac{kT}{{{E}_{F}}} \right)}^{2}} \right] \\ \end{align}</math> Mit :<math>\bar{N}=\frac{2}{3}\frac{\left( 2s+1 \right)}{2}\left( \frac{V}{{{h}^{3}}} \right)4\pi {{\left( 2m{{E}_{F}} \right)}^{\frac{3}{2}}}</math> folgt: :<math>\begin{align} & U\approx \frac{2}{5}\left( \frac{V}{{{h}^{3}}} \right)4\pi \frac{\left( 2s+1 \right)}{2}{{\left( 2m \right)}^{\frac{3}{2}}}{{\left( {{E}_{F}} \right)}^{\frac{5}{2}}}{{\left[ 1-\frac{{{\pi }^{2}}}{12}{{\left( \frac{kT}{{{E}_{F}}} \right)}^{2}} \right]}^{\frac{5}{2}}}\left[ 1+\frac{5}{2}\frac{{{\pi }^{2}}}{4}{{\left( \frac{kT}{{{E}_{F}}} \right)}^{2}} \right] \\ & \frac{2}{5}\left( \frac{V}{{{h}^{3}}} \right)4\pi \frac{\left( 2s+1 \right)}{2}{{\left( 2m \right)}^{\frac{3}{2}}}{{\left( {{E}_{F}} \right)}^{\frac{5}{2}}}\approx \frac{3}{5}\bar{N}{{E}_{F}} \\ & {{\left[ 1-\frac{{{\pi }^{2}}}{12}{{\left( \frac{kT}{{{E}_{F}}} \right)}^{2}} \right]}^{\frac{5}{2}}}\left[ 1+\frac{5}{2}\frac{{{\pi }^{2}}}{4}{{\left( \frac{kT}{{{E}_{F}}} \right)}^{2}} \right]\approx 1+5\frac{{{\pi }^{2}}}{12}{{\left( \frac{kT}{{{E}_{F}}} \right)}^{2}} \\ & \Rightarrow U\approx \frac{3}{5}\bar{N}{{E}_{F}}\left[ 1+5\frac{{{\pi }^{2}}}{12}{{\left( \frac{kT}{{{E}_{F}}} \right)}^{2}} \right] \\ \end{align}</math> Somit haben wir die '''kalorische Zustandsgleichung''' :<math>U\approx \frac{3}{5}\bar{N}{{E}_{F}}\left[ 1+5\frac{{{\pi }^{2}}}{12}{{\left( \frac{kT}{{{E}_{F}}} \right)}^{2}} \right]</math> und die '''thermische Zustandsgleichung''' :<math>pV=\frac{2}{3}U\approx \frac{2}{5}\bar{N}{{E}_{F}}\left[ 1+5\frac{{{\pi }^{2}}}{12}{{\left( \frac{kT}{{{E}_{F}}} \right)}^{2}} \right]</math> Das bedeutet: Der Druck des fermigases ist um einen Faktor <math>\frac{{{E}_{F}}}{kT}</math> größer als in klassischen idealen Gasen Beispiel: :<math>{{E}_{F}}\approx 1eV\Rightarrow T\tilde{\ }{{10}^{4}}K</math> 1 eV entspricht 10.000 K!! '''Grund ''' ist das Pauli- Prinzip!! Also eine effektive Abstoßung der Teilchen! Dies bewirkt für niedrige Temperaturen den enormen Faktor :<math>\frac{{{E}_{F}}}{kT}</math> , mit dem der Druck gegenüber dem idealen Gas zu multiplizieren ist. Für sehr hohe Temperaturen überwiegt dann der hintere teil, und es gilt: Der Fermidruck ist etwa :<math>pV=\frac{2}{3}U\approx \frac{2}{5}\bar{N}{{E}_{F}}5\frac{{{\pi }^{2}}}{12}{{\left( \frac{kT}{{{E}_{F}}} \right)}^{2}}=\frac{{{\pi }^{2}}}{6}\bar{N}kT\left( \frac{kT}{{{E}_{F}}} \right)</math> Also auch größer als beim klassischen idealen Gas, nämlich um den Faktor <math>\left( \frac{kT}{{{E}_{F}}} \right)</math> !
Summary:
Please note that all contributions to testwiki are considered to be released under the Creative Commons Attribution (see
Testwiki:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
Edit source
View history
More
Search
Navigation
Main page
Recent changes
Random page
Physikerwelt
Tools
What links here
Related changes
Special pages
Page information
In other projects