Editing
Eigenschaften eindimensionaler stationärer Zustände
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Beweis des Knotensatzes==== Zu JEDEM E existiert genau eine Lösung <math>{{\phi }_{E}}(x)</math>der Gleichung <math>\phi \acute{\ }{{\acute{\ }}_{E}}(x)=\frac{2m}{{{\hbar }^{2}}}\left[ V(x)-E \right]{{\phi }_{E}}(x)</math>mit <math>\begin{matrix} \lim \\ x\to -\infty \\ \end{matrix}{{\phi }_{E}}(x)=0</math> (Bilde z.B. Linearkombination von 2 linear unabhängigen Lösungen). Dies gilt natürlich nur im nicht entarteten Fall! Wie er unter 2) für <math>{{V}_{\min }}(x)<E<{{V}_{+}}(x)</math>der Fall ist! Nun ist dann aber im Allgemeinen <math>\begin{matrix} \lim \\ x\to +\infty \\ \end{matrix}{{\phi }_{E}}(x)\ne 0</math>. Verschiebt man nun E so, dass auch <math>\begin{matrix} \lim \\ x\to +\infty \\ \end{matrix}{{\phi }_{E}}(x)=0</math> → dann erhalten wir die Energien, die die speziellen diskreten Eigenwerte E repräsentieren. Die Behauptung ist: zwischen 2 Eigenwerten muss immer ein weiterer Knoten vom Inneren an den Rand wandern: <u>'''Beweis:'''</u> Sei <math>{{x}_{0}}(E)</math>eine Nullstelle von <math>{{\phi }_{E}}(x)</math>. Nun bilde man die Wronski- Determinante von <math>{{\phi }_{E}}(x)</math>und von <math>z(x):=\frac{\partial {{\phi }_{E}}(x)}{\partial E}</math> Es gilt: :<math>\left( {{\phi }_{E}}\acute{\ }z-{{\phi }_{E}}z\acute{\ } \right)\left. {} \right|_{-\infty }^{{{x}_{0}}}=\int\limits_{-\infty }^{{{x}_{0}}}{\left( {{\phi }_{E}}\acute{\ }\acute{\ }z-{{\phi }_{E}}z\acute{\ }\acute{\ } \right)dx}</math> Dabei: :<math>\begin{align} & \left( {{\phi }_{E}}\acute{\ }z-{{\phi }_{E}}z\acute{\ } \right)\left. {} \right|_{-\infty }^{{{x}_{0}}}={{\phi }_{E}}\acute{\ }({{x}_{0}})z({{x}_{0}})-{{\phi }_{E}}({{x}_{0}})z\acute{\ }({{x}_{0}})-{{\phi }_{E}}\acute{\ }(-\infty )z(-\infty )+{{\phi }_{E}}(-\infty )z\acute{\ }(-\infty ) \\ & {{\phi }_{E}}({{x}_{0}})={{\phi }_{E}}\acute{\ }(-\infty )=0 \\ & \Rightarrow \left( {{\phi }_{E}}\acute{\ }z-{{\phi }_{E}}z\acute{\ } \right)\left. {} \right|_{-\infty }^{{{x}_{0}}}={{\phi }_{E}}\acute{\ }({{x}_{0}})z({{x}_{0}}) \\ \end{align}</math> Außerdem: :<math>\left( {{\phi }_{E}}\acute{\ }\acute{\ }z-{{\phi }_{E}}z\acute{\ }\acute{\ } \right)={{\phi }_{E}}\acute{\ }\acute{\ }z+{{\phi }_{E}}\acute{\ }z\acute{\ }-{{\phi }_{E}}\acute{\ }z\acute{\ }-{{\phi }_{E}}z\acute{\ }\acute{\ }</math> Aus der Schrödingergleichung <math>\phi \acute{\ }{{\acute{\ }}_{E}}(x)=\frac{2m}{{{\hbar }^{2}}}\left[ V(x)-E \right]{{\phi }_{E}}(x)</math>folgt durch Differenziation nach der Energie: :<math>z\acute{\ }\acute{\ }=\frac{2m}{{{\hbar }^{2}}}\left[ V(x)-E \right]z-\frac{2m}{{{\hbar }^{2}}}{{\phi }_{E}}(x)</math> Kombiniert man dies mit <math>\phi \acute{\ }{{\acute{\ }}_{E}}(x)=\frac{2m}{{{\hbar }^{2}}}\left[ V(x)-E \right]{{\phi }_{E}}(x)</math>und <math>\left( {{\phi }_{E}}\acute{\ }z-{{\phi }_{E}}z\acute{\ } \right)\left. {} \right|_{-\infty }^{{{x}_{0}}}=\int\limits_{-\infty }^{{{x}_{0}}}{\left( {{\phi }_{E}}\acute{\ }\acute{\ }z-{{\phi }_{E}}z\acute{\ }\acute{\ } \right)dx}</math> so folgt: :<math>{{\phi }_{E}}\acute{\ }({{x}_{0}})z({{x}_{0}})=\frac{2m}{{{\hbar }^{2}}}\int\limits_{-\infty }^{{{x}_{0}}}{{{\phi }_{E}}^{2}dx}>0</math>Mit<math>\begin{align} & 0=\frac{d}{dE}{{\phi }_{E}}({{x}_{0}})=\frac{\partial {{\phi }_{E}}({{x}_{0}})}{\partial E}+{{\phi }_{E}}\acute{\ }({{x}_{0}})\frac{\partial {{x}_{0}}}{\partial E} \\ & \frac{\partial {{\phi }_{E}}}{\partial E}=z \\ \end{align}</math> folgt schließlich: :<math>0=\frac{d{{x}_{0}}}{dE}=-\frac{z({{x}_{0}})}{{{\phi }_{E}}\acute{\ }({{x}_{0}})}=-z{{({{x}_{0}})}^{2}}{{\left[ \int\limits_{-\infty }^{{{x}_{0}}}{{{\phi }_{E}}^{2}dx} \right]}^{-1}}<0</math> Also wandern die Nullstellen mit abnehmender Energie nach rechts. Bei jedem Eigenwert verschwindet eine Nullstelle bei <math>\infty </math>. Für <math>E={{V}_{\min }}</math>hat <math>{{\phi }_{E}}(x)</math>KEINE endliche Nullstelle mehr: Sonst wäre für <math>-\infty <{{x}_{0}}(E)<+\infty </math>: :<math>\int\limits_{-\infty }^{{{x}_{0}}}{\left( {{\phi }_{E}}\acute{\ }{{\phi }_{E}} \right)dx}=-\int\limits_{-\infty }^{{{x}_{0}}}{\left( {{\phi }_{E}}\acute{\ }{{\phi }_{E}}\acute{\ } \right)dx}=\frac{2m}{{{\hbar }^{2}}}(V-E)\int\limits_{-\infty }^{{{x}_{0}}}{{{\phi }_{E}}^{2}dx}>0</math> Also ein Widerspruch!
Summary:
Please note that all contributions to testwiki are considered to be released under the Creative Commons Attribution (see
Testwiki:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
Edit source
View history
More
Search
Navigation
Main page
Recent changes
Random page
Physikerwelt
Tools
What links here
Related changes
Special pages
Page information
In other projects