Editing
Eigenschaften eindimensionaler stationärer Zustände
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Charakterisierung des Energiespektrums==== Gegeben sei ein stückweise stetiges, nach unten beschränktes Potenzial mit <math>{{V}_{+}}\le {{V}_{-}}\le \infty </math> Für den Bereich <math>E<V(x)</math>(klassische verboten), gilt: :<math>\frac{\phi \acute{\ }\acute{\ }(x)}{\phi (x)}=\frac{2m}{{{\hbar }^{2}}}\left( V(x)-E \right)>0</math> Also für den Fall <math>\phi (x),\phi \acute{\ }\acute{\ }(x)>0</math>ist die Krümmung konvex und für <math>\phi (x),\phi \acute{\ }\acute{\ }(x)<0</math>(zweite mögliche Alternative) ist die Krümmung konkav. Jedenfalls ist die Wellenfunktion von der x- Achse "weggekrümmt", also allgemein gesprochen "divergent": Dies ist deutlicher zu erkennen, wenn man Potenziale einzeichnet, die hier größer sind als die Energie: Es gibt immer exponentielle Dämpfung in derartigen Fällen: Im Bereich <math>E>V(x)</math>gilt: <math>\frac{\phi \acute{\ }\acute{\ }(x)}{\phi (x)}=<0</math>. Dieser Bereich ist auch klassisch erlaubt. Hier ist die Krümmung stets zur x- Achse hin, also im Wesentlichen oszillierend: Damit können wir unsere Eigenfunktionen klassifizieren: 1) <math>E<{{V}_{\min }}(x)</math>: Die Energie liegt überall unterhalb des Potenzials → <math>\phi (x)</math>divergiert nach <math>\infty </math>. Keine Lösung existiert! # <math>{{V}_{\min }}(x)<E<{{V}_{+}}(x)</math>: Es existieren gebundene Zustände; * bei symmetrischem (vollkommen rotationssymmetrisch) Potenzial V existiert mindestens ein gebundener Zustand <math>{{\phi }_{0}}(x)</math> → eindimensionale Potenzialtöpfe sind immer vollkommen rotationssymmetrisch! → es existiert immer ein gebundener Zustand. Dies ist anders bei 2- / 3- dimensionalen Potenzialtöpfen! Wenn diese nicht vollständig rotationssymmetrisch sind, kann es sein, dass kein Zustand existiert, wenn die Töpfe flach genug sind! * Das Energiespektrum ist diskret und nicht entartet: <math>{{E}_{0}}<{{E}_{1}}<...</math> entartet heißt: zu einem Eigenwert gehören mehrere, linear unabhängige Eigenfunktionen! * Knotensatz: Die zum n-ten Eigenwert <math>{{E}_{n}}</math>gehörende Eigenfunktion <math>{{\phi }_{n}}(x)</math>hat n Knoten (Nullstellen im Inneren des Definitionsbereichs).
Summary:
Please note that all contributions to testwiki are considered to be released under the Creative Commons Attribution (see
Testwiki:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
Edit source
View history
More
Search
Navigation
Main page
Recent changes
Random page
Physikerwelt
Tools
What links here
Related changes
Special pages
Page information
In other projects