Editing
Operatoren im Hilbertraum
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Verallgemeinerung==== Sei<math>F(\bar{r},\bar{p})</math>eine klassische Observable, beispielsweise der Impuls, die Energie, der Drehimpuls,...), so ergibt sich F als Operator in der Ortsdarstellung: :<math>F(\bar{r},\bar{p})\to \hat{F}(\hat{\bar{r}},\tfrac{\hbar }{i}\nabla )</math> Der abstrakte (darstellungsfreie Operator) folgt durch Aufintegration der Projektionen (Einschub des Vollständigen Satzes von Eigenfunktionen, auf die projiziert wird, Einschub einer Eins): :<math>\hat{F}=\int_{{}}^{{}}{{{d}^{3}}r}\left| {\bar{r}} \right\rangle \hat{F}(\hat{\bar{r}},\tfrac{\hbar }{i}\nabla )\left\langle {\bar{r}} \right|</math> Umgekehrt, falls die Observable in abstrakter Operatordarstellung gegeben ist: :<math>\left| \Phi \right\rangle :=\hat{F}\left| \Psi \right\rangle </math> So folgt für die Ortsdarstellung dieses Zustandes :<math>\left\langle {\bar{r}} | \Phi \right\rangle =\left\langle {\bar{r}} \right|\hat{F}\left| \Psi \right\rangle =\int_{{}}^{{}}{{{d}^{3}}r\acute{\ }\left| \bar{r}\acute{\ } \right\rangle \left\langle {\bar{r}} \right|\hat{F}\left| \Psi \right\rangle \left\langle \bar{r}\acute{\ } \right|=}\int_{{}}^{{}}{{{d}^{3}}r\acute{\ }\left\langle {\bar{r}} \right|\hat{F}\left| \bar{r}\acute{\ } \right\rangle \left\langle \bar{r}\acute{\ } | \Psi \right\rangle }</math> Auch hier wurde wieder eine 1, also ein vollständiger Satz von Basisfunktionen eingeschoben. Somit aber: :<math>\Phi (\bar{r})=\int_{{}}^{{}}{{{d}^{3}}r\acute{\ }\left\langle {\bar{r}} \right|\hat{F}\left| \bar{r}\acute{\ } \right\rangle }\Psi (\bar{r}\acute{\ })</math> Im Allgemeinen werden die Operatoren in speziellen Darstellungen, wie der obigen Ortsdarstellung zu LINEAREN INTEGRALOPERATOREN (nichtlokal!) Für die Ortsdarstellung für ein Teilchen im Potenzial F gilt speziell :<math>\left\langle {\bar{r}} \right|\hat{F}\left| \bar{r}\acute{\ } \right\rangle =\delta (\bar{r}-\bar{r}\acute{\ })\hat{F}(\bar{r},\frac{\hbar }{i}\nabla )</math> (lokaler Differenzialoperator, Lokalisation an r´) Übungsweise soll der nichtlokale Hamiltonoperator bestimmt werden. Ortsoperator: :<math>\begin{align} & \hat{\bar{r}}\Psi (\bar{r})=\bar{r}\Psi (\bar{r}) \\ & \hat{\bar{r}}\left\langle {\bar{r}} | \Psi \right\rangle =\bar{r}\left\langle {\bar{r}} | \Psi \right\rangle \\ \end{align}</math> Dabei ist <math>\hat{\bar{r}}</math>der Operator, <math>\left\langle {\bar{r}} | \Psi \right\rangle </math>die Eigenfunktion und <math>\bar{r}</math>der Eigenwert. :<math>\begin{align} & \left\langle {\bar{r}} \right|\hat{\bar{r}}\left| \Psi \right\rangle =\int_{{}}^{{}}{{{d}^{3}}r\acute{\ }\left\langle {\bar{r}} \right|\hat{\bar{r}}\left| \bar{r}\acute{\ } \right\rangle }\left\langle \bar{r}\acute{\ } | \Psi \right\rangle =\bar{r}\left\langle {\bar{r}} | \Psi \right\rangle \\ & \Rightarrow \left\langle {\bar{r}} \right|\hat{\bar{r}}\left| \bar{r}\acute{\ } \right\rangle =\bar{r}\delta (\bar{r}-\bar{r}\acute{\ }) \\ \end{align}</math> In der Impulsdarstellung: :<math>\begin{align} & \Phi :=\hat{\bar{r}}\left| \Psi \right\rangle \\ & \Phi (\bar{p})\equiv \left\langle {\bar{p}} | \Phi \right\rangle =\left\langle {\bar{p}} \right|\hat{\bar{r}}\left| \Psi \right\rangle \\ & \Phi (\bar{p})=\int_{{}}^{{}}{{{d}^{3}}r}\left\langle {\bar{p}} | {\bar{r}} \right\rangle \left\langle {\bar{r}} \right|\hat{\bar{r}}\left| \Psi \right\rangle \\ & \left\langle {\bar{p}} | {\bar{r}} \right\rangle =\frac{1}{{{\left( 2\pi \hbar \right)}^{\tfrac{3}{2}}}}{{e}^{-i\frac{\bar{p}\bar{r}}{\hbar }}} \\ & \left\langle {\bar{r}} \right|\hat{\bar{r}}\left| \Psi \right\rangle =\bar{r}\left\langle {\bar{r}} | \Psi \right\rangle \\ & \Rightarrow \Phi (\bar{p})=\int_{{}}^{{}}{{{d}^{3}}r}\left\langle {\bar{p}} | {\bar{r}} \right\rangle \left\langle {\bar{r}} \right|\hat{\bar{r}}\left| \Psi \right\rangle =\int_{{}}^{{}}{{{d}^{3}}r}\frac{1}{{{\left( 2\pi \hbar \right)}^{\tfrac{3}{2}}}}{{e}^{-i\frac{\bar{p}\bar{r}}{\hbar }}}\bar{r}\Psi (\bar{r})=\frac{1}{{{\left( 2\pi \hbar \right)}^{\tfrac{3}{2}}}}\int_{{}}^{{}}{{{d}^{3}}r}\bar{r}{{e}^{-i\frac{\bar{p}\bar{r}}{\hbar }}}\Psi (\bar{r}) \\ & \bar{r}{{e}^{-i\frac{\bar{p}\bar{r}}{\hbar }}}=-\frac{\hbar }{i}{{\nabla }_{p}}\left( {{e}^{-i\frac{\bar{p}\bar{r}}{\hbar }}} \right) \\ & {{\nabla }_{p}}:=\left( \begin{matrix} \frac{\partial }{\partial {{p}_{x}}}, & \frac{\partial }{\partial {{p}_{y}}}, & \frac{\partial }{\partial {{p}_{z}}} \\ \end{matrix} \right) \\ & \Rightarrow \Phi (\bar{p})=\frac{1}{{{\left( 2\pi \hbar \right)}^{\tfrac{3}{2}}}}\int_{{}}^{{}}{{{d}^{3}}r}\bar{r}{{e}^{-i\frac{\bar{p}\bar{r}}{\hbar }}}\Psi (\bar{r})=-\frac{\hbar }{i}{{\nabla }_{p}}\left[ \int_{{}}^{{}}{{{d}^{3}}r\frac{1}{{{\left( 2\pi \hbar \right)}^{\tfrac{3}{2}}}}}{{e}^{-i\frac{\bar{p}\bar{r}}{\hbar }}}\Psi (\bar{r}) \right] \\ & \frac{1}{{{\left( 2\pi \hbar \right)}^{\tfrac{3}{2}}}}{{e}^{-i\frac{\bar{p}\bar{r}}{\hbar }}}=\left\langle {\bar{p}} | {\bar{r}} \right\rangle \\ & \Rightarrow \Phi (\bar{p})=-\frac{\hbar }{i}{{\nabla }_{p}}\left[ \int_{{}}^{{}}{{{d}^{3}}r\left\langle {\bar{p}} | {\bar{r}} \right\rangle \left\langle {\bar{r}} | \Psi \right\rangle } \right]=-\frac{\hbar }{i}{{\nabla }_{p}}\tilde{\Psi }(\bar{p}) \\ \end{align}</math> Also: Für die Impulsdarstellung des Ortsoperators gilt: :<math>\hat{\bar{r}}\to -\frac{\hbar }{i}{{\nabla }_{p}}</math>
Summary:
Please note that all contributions to testwiki are considered to be released under the Creative Commons Attribution (see
Testwiki:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
Edit source
View history
More
Search
Navigation
Main page
Recent changes
Random page
Physikerwelt
Tools
What links here
Related changes
Special pages
Page information
In other projects