Editing
Kovariante Schreibweise der Relativitätstheorie
(section)
Jump to navigation
Jump to search
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
====Verallgemeinerung==== Für beliebige 4- Vektoren <math>{{a}^{i}}</math> gilt: :<math>\begin{align} & {{a}_{0}}={{a}^{0}} \\ & {{a}_{\alpha }}=-{{a}^{\alpha }}\quad \alpha =1,2,3 \\ \end{align}</math> Lorentz- Invariante lassen sich als Skalarprodukt <math>{{a}_{i}}{{a}^{i}}</math> schreiben: =====Der d´Alemebert-Operator===== :<math>\#:=\Delta -\frac{1}{{{c}^{2}}}\frac{{{\partial }^{2}}}{\partial {{t}^{2}}}=-\frac{\partial }{\partial {{x}^{i}}}\frac{\partial }{\partial {{x}_{i}}}</math> Mit :<math>\frac{\partial }{\partial {{x}^{i}}}=\left( \frac{1}{c}\frac{\partial }{\partial t},\frac{\partial }{\partial {{x}^{\alpha }}} \right)=:{{\partial }_{i}}</math> kovariant Die Eigenschaft der Kovarianz wird später aus dem Transformationsverhalten begründet! :<math>\frac{\partial }{\partial {{x}_{i}}}=\left( \frac{1}{c}\frac{\partial }{\partial t},-\frac{\partial }{\partial {{x}^{\alpha }}} \right)=:{{\partial }^{i}}</math> kontravariant → Die Eigenschaft der Kontravarianz wird später aus dem Transformationsverhalten begründet! <u>'''Also:'''</u> :<math>\Rightarrow \ \#=-{{\partial }_{i}}{{\partial }^{i}}</math> <u>'''Vierergeschwindigkeit'''</u> :<math>\begin{align} & {{u}^{i}}:=\frac{d{{x}^{i}}}{ds} \\ & ds={{\left( d{{x}^{i}}d{{x}_{i}} \right)}^{\frac{1}{2}}}={{\left( {{c}^{2}}d{{t}^{2}}-{{\left( d\bar{r} \right)}^{2}} \right)}^{\frac{1}{2}}}=c{{\left[ 1-{{\left( \frac{1}{c}\frac{d\bar{r}}{dt} \right)}^{2}} \right]}^{\frac{1}{2}}}dt \\ & ds:={{\left( 1-{{\beta }^{2}} \right)}^{\frac{1}{2}}}dt=\frac{c}{\gamma }dt \\ \end{align}</math> Dabei gilt: :<math>\begin{align} & \beta :=\frac{v}{c}=\frac{1}{c}\left| \frac{d\bar{r}}{dt} \right| \\ & \gamma :=\frac{1}{\sqrt{1-{{\beta }^{2}}}} \\ \end{align}</math> Also: :<math>\begin{align} & {{u}^{0}}=\gamma \\ & {{u}^{\alpha }}=\frac{\gamma }{c}{{v}^{\alpha }}=\frac{1}{c}\frac{d{{x}^{\alpha }}}{d\tau } \\ \end{align}</math> Mit der Eigenzeit :<math>d\tau =\frac{dt}{\gamma }</math> Die Eigenzeit ist als die Zeit im momentanen Ruhesystem zu verstehen! :<math>{{u}^{i}}{{u}_{i}}=\frac{d{{x}^{i}}d{{x}_{i}}}{d{{s}^{2}}}=1</math> ist nicht vom Bezugssystem abhängig, also invariant! =====Viererimpuls===== :<math>\begin{align} & {{p}^{i}}:={{m}_{0}}c{{u}^{i}} \\ & \Rightarrow {{p}^{i}}{{p}_{i}}={{m}_{0}}^{2}{{c}^{2}}{{u}^{i}}{{u}_{i}}={{m}_{0}}^{2}{{c}^{2}} \\ & {{p}^{0}}=\frac{{{m}_{0}}c}{\sqrt{1-{{\left( \frac{v}{c} \right)}^{2}}}}=m(v)c={{p}_{0}} \\ & {{p}^{\alpha }}=\frac{{{m}_{0}}{{v}^{\alpha }}}{\sqrt{1-{{\left( \frac{v}{c} \right)}^{2}}}}=m(v){{v}^{\alpha }}=-{{p}_{\alpha }} \\ \end{align}</math> Physikalische Bedeutung von <math>{{p}^{0}}</math> : Mit der 4-er Kraft: <math>{{k}^{i}}:=\frac{d}{d\tau }{{p}^{i}}</math> folgt die Leistungsbilanz: :<math>{{k}^{i}}{{u}_{i}}=\left[ \frac{d}{d\tau }\left( {{m}_{0}}c{{u}^{i}} \right) \right]{{u}_{i}}</math> Mit Hilfe des Energiesatz kann dies umgewandelt werden zu :<math>\begin{align} & {{k}^{i}}{{u}_{i}}=\frac{{{m}_{0}}c}{2}\frac{d}{d\tau }\left( {{u}^{i}}{{u}_{i}} \right)=0 \\ & {{u}^{i}}{{u}_{i}}=1 \\ \end{align}</math> also lorentzinvariant! <u>'''Außerdem gilt:'''</u> :<math>\begin{align} & {{k}^{i}}{{u}_{i}}=\frac{d}{d\tau }\left( {{p}^{0}} \right){{u}_{0}}+{{k}^{\alpha }}{{u}_{\alpha }}=\gamma \frac{d}{d\tau }\left( {{p}^{0}} \right)+\frac{\gamma }{c}{{k}^{\alpha }}{{v}_{\alpha }}=\frac{\gamma }{c}\left[ \frac{d}{d\tau }\left( c{{p}^{0}} \right)-\bar{k}\bar{v} \right]=0 \\ & \left( c{{p}^{0}} \right)=Energie \\ & \bar{k}\bar{v}=Leistung \\ \end{align}</math> Somit jedoch folgt eine Bestimmungsgleichung an <math>\left( {{p}^{0}} \right)=\frac{E}{c}</math> , also <math>E=\frac{{{m}_{0}}{{c}^{2}}}{\sqrt{\left( 1-{{\beta }^{2}} \right)}}</math> als Energie eines relativistischen Teilchens. Das Skalarprodukt des Viererimpulses liefert lorentzinvariant <math>\begin{align} & {{p}^{i}}{{p}_{i}}=\frac{{{E}^{2}}}{{{c}^{2}}}-{{{\bar{p}}}^{2}}={{m}_{0}}^{2}{{c}^{2}} \\ & \bar{p}=\frac{{{m}_{0}}\bar{v}}{\sqrt{1-{{\beta }^{2}}}} \\ \end{align}</math> Also folgt an die Energie: :<math>{{E}^{2}}={{m}_{0}}^{2}{{c}^{4}}+{{c}^{2}}{{\bar{p}}^{2}}</math> Dies ist die relativistsiche Energie- Impuls- Beziehung
Summary:
Please note that all contributions to testwiki are considered to be released under the Creative Commons Attribution (see
Testwiki:Copyrights
for details). If you do not want your writing to be edited mercilessly and redistributed at will, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource.
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Navigation menu
Personal tools
Not logged in
Talk
Contributions
Log in
Namespaces
Page
Discussion
English
Views
Read
Edit
Edit source
View history
More
Search
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Tools
What links here
Related changes
Special pages
Page information
In other projects